УДК 541.6 + 547.863

ХИМИЯ

## А. М. БЕРЛИН, член-корреспондент АН СССР В. В. КОРШАК, Е. С. КРОНГАУЗ, Р. Л. НИКИТИНА, Н. М. КОФМАН

## СИНТЕЗ НОВЫХ ПОЛИХИНОКСАЛИНОВ

Все возрастающий в последнее время интерес к полихиноксалинам (1-4) и особенно к фенилированным полихиноксалинам (ПФХ (5-8) объясняется рядом причин: прежде всего высокой термостойкостью последних, а также необычайной легкостью реакции их образования, протекающей в одну стадию при комнатной температуре и приводящей к пол-

ностью циклизованным, растворимым и перерабатываемым полимерам, что открывает возможность их практического использования. Вместе с тем в литературе практически отсутствуют данные об условиях синтеза ПФХ и это побудило пас заняться изучением реакции их образования с целью пахождения оптимальных и воспроизводимых условий получения высокомолекулярных продуктов.

Данное исследование было осуществлено на примере взаимодействия 1,4-бис-(фенилглиоксалил)бензола с 3,3′,4,4′-тетрааминодифенилметаном, в результате чего получен поли-[2,2'-(1,4-фенилен)-7,7'-метилен - бис - (3-фенилхиноксалин) ], свойства и превращения которого также изучались нами. Реакцию проводили в растворе м-крезола при концентрации исходных реагентов 0,2 мол/л в токе аргона при комнатной температуре в течение 2 час. Указанное время оказалось вполне достаточным для завершения процесса циклизации, о чем свидетельствует отсутствие характеристических полос поглощения карбонильной группы ис-

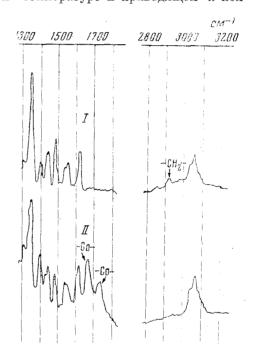



Рис. 1. И.-к. спектры поли-[2,2'-(1,4-фенилеп)-7,7'-метилен-бис - (3 - фенилхинокса - лина)]: I — исходпый полимер, II — полимер после прогревания ири  $300^\circ$  на воздухе

ходного кетона при  $1680~{\rm cm^{-1}}$  и полос поглощения аминогруппы исходного тетраамина в области  $3200-3400~{\rm cm^{-1}}$  в и.-к. спектре полимеров (рис. 1, кривая I), а также для достижения максимального молекулярного веса  $\Pi\Phi X$ . При этом было установлено, что при увеличении времени реакции до  $24~{\rm чаc}$ . или повышении температуры реакции до  $200^{\circ}$ , возрастания вязкости полимера не наблюдается; выход полимеров во всех случаях количественный.

Изучение влияния на вязкость образующихся ПФХ соотношения исходных реагентов — 3,3',4,4'-тетрааминоодифенилметана (I) и 1,4-бисфенилгиюксалил)-бензола (II) и порядка их введения в реакцию, резуль-

таты которого представлены в табл. 1, показало, что наилучшим является способ № 3: использование стехиометрических количеств исходных веществ и прибавление суспензии тетракетона в м-крезоле к суспензии тетраамина также в м-крезоле.

Следует отметить, что в случае применения в реакции небольшого избытка как тетраамина, так и тетракетона (способы N = 5 и N = 6) также образуются достаточно высокомолекулярные полимеры, полностью раство-

Таблица 1

Свойства поли-[2,2'-(1,4-фенилен)-7,7'-метилен-бис-3-(фенилхиноксалина)]

|             | Способ прибавления<br>реагентов      | Молярное соотно-<br>шение исходных<br>реагентов I: II | <sup>л</sup> пр * | Растворимость |          |                                | C.F.                        | ٠°.                    |
|-------------|--------------------------------------|-------------------------------------------------------|-------------------|---------------|----------|--------------------------------|-----------------------------|------------------------|
| N•N•<br>n.n |                                      |                                                       |                   | CHCl3         | ж-крезол | H <sub>2</sub> SO <sub>4</sub> | Т-ра размяг<br>чения **, °С | Т-ра разл<br>жения *** |
| 1           | I и II одновременно в виде порошка   | 0,002:0,002                                           | 1,03              | p             | p        | р                              |                             | <b>—5</b> 00           |
| 2           | Суспензия І к суспензии ІІ           | 0,002:0,002                                           | 0,97              | p             | p        | р                              |                             |                        |
| 3           | Суспензия II к суспензии I           | 0,002:0,002<br>0,002:0,002                            | 2.50 - 2.83       | p             | p        | р                              | 290                         | -500                   |
| 4           | II в виде порошка к сус-<br>пензии I |                                                       | 1-1,2             | p             | p        | p                              |                             |                        |
| 5           | Суспензия I к суспензии II           | 0,00202:0,002<br>0,002:0,00202<br>0,002:0,00202       | 0,88              | р             | p        | р                              | 290                         | 480                    |
| 6           | Суснензия II к суспензии I           | 0,002:0,00202                                         | 1,66              | p             | p        | p                              |                             | _                      |
| 7           | Суспензия II к суспензии I           | 0,002:0,00202                                         | _                 | нр            | пр       | нр                             |                             |                        |
| 1           | (воздух)                             | 1                                                     | ļ                 |               | l        | i (                            |                             | I                      |

\*  $n_{\rm H\,D}$  0,5% раствора полимера в м-крезоле при 25° С.

\*\* Т-ра размягчения определена из термомеханических кривых. \*\*\* Т-ра разложения по данным т.г.а.,  $\Delta t = 4.5$  град/мин на воздухе.

римые в хлороформе и обладающие пленкообразующими свойствами. Очевидно, в отличие от 1,4-бис-(глиоксалил)-бензола, использование которого даже в небольшом избытке вызывает трехмеризацию полимера (4), наличие в реакционной смеси 1,4-бис-(фенилглиоксалил)-бензола благоприятствует протеканию основного процесса внутримолекулярной циклизации, следствием чего является образование линейного растворимого полимера по следующей схеме:

$$H_2N$$
  $NH_2$   $+$   $OC$   $CO$   $NH_2$   $CO$ 

Образование сшитого полимера при применении избытка 1,4-бис-(фенилглиоксалил)-бензола наблюдается лишь в случае проведения реакции на воздухе.

Все полученные полимеры представляют собой слегка окрашенные (кремового цвета), волокнистые, аморфные вещества, легко растворимые в обычных органических растворителях: хлорированных углеводородах

фенолах и кислотах ( $H_2SO_4$ , HCOOH,  $CF_3COOH$ ), образуют в хлороформе, м-крезоле, N-метил-2-пирролидоне концентрированные (до 20%) растворы. Мол. вес. полимера ( $\eta_{\pi p} = 2.8$  дл/г), определенный методом светорассеяния в хлороформе, равен 330~000.

Динамический термогравиметрический анализ на воздухе и в инертной атмосфере показал, что поли-[2,2'-(1,4-фенилен)-7,7'-метилен-бис-(3-фенилхиноксалин)] относится, как и другие ПФХ, к ряду термостойких по-

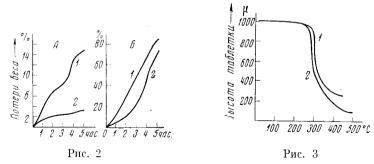



Рис. 2. Кривые изотермического термогравиметрического анализа ПФХ при  $400^{\circ}$  (A) и при  $450^{\circ}$  (B) на воздухе. I— поли-[2,2'(1,4-фенилен)-7,7'-метилен-бис-(3-фенилхиноксалина)], 2— поли-[2,2'-(1,4-фенилен)-7,7'-окси-бис-(3-фенилхиноксалина)]

Рис. 3. Кривые растекания  $\Pi\Phi X$ . Обозначения те же, что на рис. 2

лимеров. Потери в весе у него начинаются при  $500^\circ$ , т. е. так же, как у поли-[2,2'-(1,4-фенилен)-7,7'-окси-бис-(3-фенилхиноксалина)]. Различие в термостойкости полихиноксалинов, содержащих метиленовые и эфирные мостиковые группы, проявляется при исследовании полимеров в изотермических условиях — нагревании порошкообразного полимера при  $400^\circ$  на воздухе в течение 5 час. В этих условиях полимер с простыми эфирными связями теряет около 3% своего первоначального веса, тогда как полимер с метиленовыми мостиками — 16% (рис. 2). Нагревание при  $450^\circ$  приводит к 80% потерям в весе для обоих полимеров за 5 час.

Температура размягчения полученного полимера 290°, как и у других ПФХ, лежит ниже температуры разложения 500°, что создает возможность его переработки из расплава. На рис. З изображены кривые растекания поли-[2,2'-(1,4-фенилен)-7,7'-метилен-(3-фенилхиноксалина)] (1) и поли-[2,2'-(1,4-фенилен)-7,7'-окси-(3-фенилхиноксалина)] (2), полученные на плоскостном пластометре ПП-1 при нагрузке 100 кг/см², из которых также видно, что температуры размягчения обоих полимеров находятся в области

Свойства пленок поли-[2,2'-(1,4-фенилен)-7,7'-метилен-бис-(3-фенилхиноксалина)]

| №№<br>п.п. | Испытуемый образец                                                     | Разрывная<br>прочность,<br>σ, кг/см² | Удлинение,<br>ε, % | Внешний вид              |
|------------|------------------------------------------------------------------------|--------------------------------------|--------------------|--------------------------|
| 1 2        | Исходная пленка<br>После прогрева в выс. вакууме,<br>т-ра 270°, 4 часа | 1180<br>1260                         | 60<br>20           | Желтая<br>Темно-желтая   |
| 3          | После прогрева на воздухе при<br>300°, 4 часа                          | 1158                                 | 10,2               | Коричневая, хруп-<br>кая |

300°. Вертикальный ход кривых после температуры размягчения указывает на хорошую растекаемость ПФХ и подтверждает тот факт, что они в отличие от других жесткоцепных полимеров ведут себя как истинные термопласты. Из 10% раствора полимера в хлороформе поливом на целлофановую подложку получены гибкие, эластичные желтоватые пленки. В табл. 2 приведены некоторые свойства пленок.

Из данных табл. 2 следует, что исходная пленка обладает достаточной прочностью и эластичностью, однако последняя резко падает после нагревания пленки при повышенной температуре, особенно на воздухе; пленка становится хрупкой, теряет растворимость.

Поскольку, как было указано выше, процесс циклизации при синтезе полимеров завершается полностью, можно предположить, что структурирование полимера и, как следствие этого, хрупкость пленки и потеря его растворимости даже в серной кислоте происходит за счет частичного взаимодействия оставшихся в полимере метиленовых групп и образовавшихся из них при окислении воздухом карбонильных групп. В и.-к. спектре рис. 1, кривая II) полимера, прогретого на воздухе при 300° 4 часа, отчетливо видны полосы поглощения, характерные для колебаний СО-группы. Столь необычная легкость окисления метиленовых групп, не наблюдавшаяся у других представителей полигетероариленов (у полибензимидазолов, полибензоксазолов, полипирронов, содержащих метиленовые мостиковые группы) позволила нам осуществить полимераналогичное превращение поли-[2,2'-(1,4-фенилен)-7,7'-метилен-бис-(3-фенилхиноксалина)] в поли-[2,2'(1,4-фенилен)-7,7'-кето-бис-(3-фенилхиноксалина)].

Действительно, даже при проведении реакции окисления в гетерогенных условиях кинячением полимера в ледяной уксусной кислоте с двукратным избытком SeO<sub>2</sub> в качестве окислителя в течение 20 час. в и.-к. спектре полимера появляется полоса при 1680 см<sup>-1</sup>, характерная для СО-группы, и полностью исчезает полоса при 2900—3000 см<sup>-1</sup>, характерная для СН<sub>2</sub>-группы. Полученный полимер полностью сохраняет свою растворимость, цвет, вязкость, что является дополнительным подтверждением устойчивости хиноксалинового кольца к действию окислителей и кислот при повышенной (100°) температуре. Тот же процесс окисления метиленовых групп полимера протекает за 4 часа при проведении реакции с избытком SeO<sub>2</sub> в кинящем (температура > 200°) нитробензоле, в котором полимер хорошо растворяется. Свойства полученного поли-[2,2'-(1,4-фенилен)-7,7'-кето-бис-(3-фенилхиноксалина)] исследуются.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 12 IX 1972

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> G. P. de Gaudemaris, B. J. Sillon, J. Polymer Sci. B, 2, 203 (1964). <sup>2</sup> J. K. Stille, J. R. Williamson, J. Polymer Sci. A, 2, 3867 (1964); B, 2, 209 (1964). A, 1, 4, 551 (1966). <sup>3</sup> P. M. Hergenrother, D. E. Kiyohara, Macromolecules, 3, 387 (1970). <sup>4</sup> P. M. Hergenrother, H. H. Levine, J. Appl. Polymer Sci. 14, 1037 (1970). <sup>5</sup> P. M. Hergenrother, H. H. Levine, J. Polymer Sci. A., 1, 5, 1453 (1967). <sup>6</sup> W. W. Wrasidlo, J. M. Augl, J. Polymer Sci. B, 7, 281 (1969); A, 1, 7, 3393 (1969). <sup>7</sup> W. Wrasidlo, J. M. Augl, Macromolecules, 3, 544 (1970). <sup>8</sup> W. Wrasidlo, Polymer Preprints, 12, 755 (1971).