УДК 541.13 <u>ХИМИЯ</u>

В. П. ГАЛУШКО, О. Р. ПРЯХИН, Е. С. ВАРЕНКО

о состоянии поверхности кадмия и меди в области пассивации и выделения кислорода

(Представлено академиком Л. Н. Фрумкиным 2 Х 1972)

Изучение качественного и количественного состава окислов, образующихся в процессе анодной поляризации, представляет значительный интерес для выяснения их влияния на кинетику электрорастворения металлов. Кроме того, без учета природы и свойств окисных слоев невозможно высказать определенного соображения о механизме выделения кислорода (1).

В настоящей работе методом φ , t-кривых катодного восстановления были исследованы природа и состав кислородсодержащих соединений на

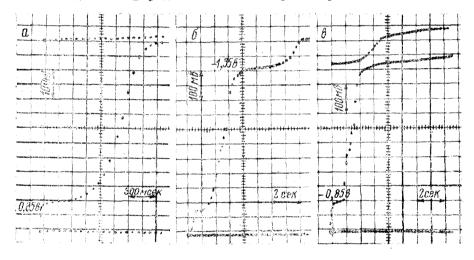


Рис. 1. Осциллограммы катодного восстановления кадмиевого электрода, окисленного при различных значениях потенциала: $a-\phi_a=-0.2,\ \delta-\phi_a=\pm 1.4$ в, $\epsilon-$ кривая восстановления CdO_2 , панесенной на поверхность кадмия

медном и кадмиевом электродах после их анодной поляризации. Кадмий в 4,5 M КОН и медь в 6,0 M К $_2$ НРО $_4$ поляризовались при различных значениях анодного потенциала, поддерживаемого с помощью потенциостата Π -5848 в течение времени, достаточного для установления стационарного состояния. Затем электроды восстанавливались при постоянной плотности тока, а изменения потенциала во времени регистрировались осциллографом С1-19Б. При этом восстановление кадмия проводили в растворе КОН той же концентрации, а меди в 1 N растворе сульфата натрия в нейтральной атмосфере. Типичные осциллограммы катодного восстановления Сd-, Cu-электродов, анодноокисленных при различных поляризациях, показаны соответственно на рис. 1 и 2, а значения рассчитанной эффективной толщины окисных пленок представлены в табл. 1.

Как видно из рис. 1a и данных табл. 1, на кривых катодного восстановления окисленного кадмиевого электрода наблюдается задержка при

1337.

Потенциал анодной поля- ризации Cd	Эффективная толщина, см·10 ⁻⁷		Потенциал	Эффективная толщина, см.10-7		
	окиси	перекиси	анодной поля- ризации Cu	закиси	окиси	перекиси
$\begin{array}{c} -0,6 \\ 0,4 \\ -0,2 \\ 0,0 \\ +0,1 \\ 0,3 \\ 0,5 \\ 0,7 \\ 0,9 \\ 1,1 \\ 1,2 \\ 1,3 \\ 1,4 \\ 1,5 \\ 1,6 \end{array}$	8,1 14,6 21,0 24,3 27,3 30,4 30,4 40,5 40,5 40,5 48,7 67,4 7,3 4,8 2,4	 66 170 283 504 1135 4830 6640	$\begin{array}{c} -0,05 \\ +0,05 \\ 0,15 \\ 0,25 \\ 0,35 \\ 0,45 \\ 0,55 \\ 0,65 \\ 0,75 \\ 0,85 \\ 0,95 \\ 1,05 \\ 1,15 \\ 1,25 \\ 1,35 \\ \end{array}$	9,5 10,36 10,08 11,94 12,08 12,08 12,08 12,08 12,08 12,08 12,08 12,08 12,08 12,08 4,68	0,13 0,37 0,65 1,30 2,12 2,31 2,51 2,71 2,91 2,82 2,11 0,65	4,52 6,81

^{*} На Сd при электрорастворении в 4,5 N растворе KOH, $i_{\rm KAT} = 20$ ма/см², S = 0,25 см²

потенциале, равном -0.85 в *. Эта задержка, согласно литературным данным (2), соответствует восстановлению окиси или гидроокиси металла (или их смеси). При смещении потенциала анодного окисления электрода до области видимого выделения кислорода ($\phi = +0.9$ в) на осциллограммах катодного восстановления кадмия (рис. 16) появляется вторая допол-

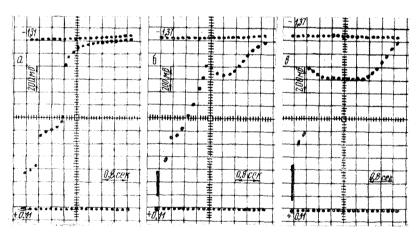


Рис. 2. Осциллограммы катодного восстановления медного электрода, предварительно поляризованного в 6,0 M растворе K_2HPO_4 при различных анодных потенциалах: $a-\phi_a=+0.15,\ \delta-\phi_a=+1.35$ в, s- кривая восстановления CuO_2 , нанесенной на поверхность меди

нительная площадка, предшествующая процессу образования водорода. Продолжительность второй задержки увеличивается с ростом потенциала анодного окисления; при этом, как видно из данных табл. 1, увеличение второй задержки сопровождается резким сокращением первой.

Высокое отрицательное значение потенциала, соответствующее второй задержке ($\phi = -1.35$ в), может отвечать восстановлению иного соедине-

^{**} На Си при электрорастворении в 6,0 М ${
m K_2HPO_4},~i_{
m KaT}=10$ ма/см², ${
m S}=0.5$ см²

^{*} Здесь и далее потенциалы приводятся относительно нормального водородного электрода.

ния кадмия с кислородом, например, перекиси металла. В литературе есть указания на возможность существования такого типа соединений при нагревании кадмия (3). В настоящей работе препарат изготавливался и анализировался по методикам (3). Апализ соединения дал состав $CdO_2 \cdot H_2O$. Катодное восстановление полученной перекиси на кадмиевом электроде протекает, как можно видеть из рис. 1 6 , при потенциале -1.34 в, что хорошо согласуется с ранее высказанным предположением о перекисной природе второй задержки. Вызывает удивление наблюдающаяся устойчивость перекисного соединения кадмия. Согласно (4), она может быть объяснена значительно меньшей теплотой атомизации кадмия ($^26.97$ ккал/ 2 г-атом) по сравнению с той же величиной для кислорода (2 9, 16 ккал/ 2 8, гатом).

На кривых катодного восстановления анодноокисленного медного электрода (рис. 2, табл. 1) наблюдаются различные по величине и продолжительности задержки потенциала. При всех исследованных значениях анодной поляризации на φ , t-кривых имеется задержка ($\varphi_{\kappa} = -0.64$ в), соответствующая восстановлению закиси меди. Начиная с потенциала 0,25 в и далее обнаруживается задержка ($\varphi_{\kappa} = -0.43$ в), соответствующая восстановлению окиси меди. При этом эффективная толщина окиси меди возрастает с увеличением анодной поляризации при неизменной толщине закиси. И, наконец, при анодной поляризации 1,25 в и более в области видимого выделения кислорода на катодных φ , t-кривых появляется третья задержка ($\phi_{\kappa} = -1.2$ в). С ее появлением количество электричества, идущее на восстановление окисной и закисной пленок, резко уменьшается. Соединение, отвечающее третьей задержке, вероятно, более богато кислородом, чем закись и окись. Синтезированная в соответствии с (5) перекись меди восстанавливается на медном катоде при потенциале -1,22 в, что позволяет высказать предположение об образовании пленки перекиси в области видимого выделения кислорода. При этом эффективная толщина слоя возрастает с увеличением анодной поляризации.

Таким образом, приведенные экспериментальные данные свидетельствуют о том, что в области высоких анодных поляризаций происходит дополнительное окисление металла с образованием перекисных кислородных соединений. Последние могут являться необходимым звеном в процессе электрохимического выделения кислорода.

Днепропетровский государственный университет им. 300-летия Воссоединения Украины с Россией

Поступило 6 IX 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Т. И. Борисова, В. И. Веселовский, ЖФХ, 27, 8, 1195 (1953). ² R. W. Ohse, Zs. Elektrochem., 64, 40, 4171 (1960). ³ С. W. W. Hoffman, R. C. Ropp, R. W. Моопеу, J. Ат. Сhem. Soc., 81, 15, 3830 (1959). ⁴ Ю. М. Голутвин, Теплоты образования и типы химической связи в неорганических кристаллах, Изд. АН. СССР, 1962, стр. 82. ⁵ Б. В. Некрасов, Основы общей химии, 3, М., 1967, стр. 66.