УДК 575

ГЕНЕТИКА

В. Е. ГИНТОВТ, И. Е. НОВИК, Х. Ф. КУШНЕР

ПОЛИМОРФИЗМ КУР ПО ГРУППАМ КРОВИ, НЕКОТОРЫЕ ПУТИ ЕГО ПОДДЕРЖАНИЯ И СЕЛЕКЦИОННОЕ ЗНАЧЕНИЕ

(Представлено академиком Н. П. Дубининым 13 XI 1972)

Наряду с многими факторами, оказывающими влияние на процесс формирования наследственного полиморфизма популяций (отбор, мутации, миграции, методы разведения) немаловажное значение могут иметь коррелятивные связи различных признаков между собой. В данной работе был исследован полиморфизм по группам крови инбредной популяции кур, связь антигенной детерминированности птицы с ее продуктивными признаками и возможное селекционное значение идентификации кур по группам крови.

Предметом исследования, начатого в 1968 г., была инбредная популяция кур породы русская белая, разводимая до этого замкнуто в течение 13 поколений главным образом путем спаривания сибсов и полусибсов. Обычно на племя оставлялись все молодки, дожившие до половозрелости. Специального отбора и подбора по каким-либо признакам не производилось, за исключением того, что петухи на племя оставлялись от лучших по яйценосности матерей. К моменту исследования в популяции коэффициент инбридинга по Райту превышал 70%.

Группы крови у кур выявлялись посредством специфических иммунных сывороток, полученных на птице этой же популяции путем изоиммунизации с последующим адсорбционным анализом сывороток. Семейным анализом наследовация тестируемых антигенов было показано, что каждая антисыворотка представляла собой реагент, выявляющий определенный аптиген, передающийся по наследству как монофакториальный признак. Полученные реагенты участвовали в международных сравнительных испытаниях в 1969 и 1971 гг. и показали серологическое сходство с сыворотками ряда других лабораторий.

В течение 1968—1970 гг. в вышеописанной популяции кур проводился учет по 7 экономически важным признакам (оплодотворяемость яиц, выводимость цыплят, живой вес цыплят и взрослой птицы, яйценоскость и вес яиц). В воспроизводстве стада в 1968 г. участвовало 10 петухов и 65 кур-несушек, в 1969 г. 19 петухов и 165 кур и в 1970 г. 14 петухов и

145 кур. Всего проанализировано боле 3500 цыплят.

В дапной популяции генетическим апализом было обнаружено 4 аллеля в В-локусе (условно обозначены B^1 , B^2 , B^3 и B^4 ; частота генов, соответственно, равнялась: 0,1080; 0,5070; 0,3084; 0,0766) и 3 аллеля в Е-локусе (E^4 , E^2 и E^3 ; частота генов 0,2244; 0,0645 и 0,7111 соответственно). Присутствие у птицы тех или иных контролируемых этими генами антигенов маркировало различные уровни жизнеспособности и продуктивности. В табл. 1 представлены различия по 7 учитываемым признакам, которые наблюдались у птиц в связи с присутствием в их генотипе тех или иных аллелей В- и Е-локусов групп крови по сравнению с их отсутствием. Достоверно больший отход цыплят получен от родителей, обладающих B_4 (на 9,96%; P < 0,001) и B_3 (на 4,82%; P < 0,05) антигенами. При этом более низкая жизнеспособность особей — носителей B_4 антигена прослеживалась во все периоды онтогенеза. Этим, очевидно, можно объяснить очень

Таблица 1 Связь различны аллелей В- и Е-систем групп крови с хозяйственно полезными признаками

Признаки	Величины превосходства (+) или отставания () при наличии данных аллелей по сравнению с их отсутствием						
	Bı	\mathbb{B}^2	\mathbf{B}_{3}	B4	E1	E ²	E3
Оплодотворяемость янц (%)	+1,43	5,77 ***	+3,63 **	+3,42**	-1,64	5,59**	
Эмбриональная жизнеспособность (%)	+4,13**	+2,45	+3,23*	_3,31 **	-0,39	-0,79	
Жизнеспособность цыплят (%)	+3,04	+3,25	-4,82 *	_9,96 ***	+0,28	+5,64	-1,29
Жизнеспособность взрослой птицы (%)	+1,34	+5,68	0,09	4,88	+4,19	+6,80*	-5,71
Живой вес кур в 4 мес., 1969 г. (г)	+37,22	1 0,98	10,01	-25,12	+13,23	24,99	+21,84
Живой вес кур в 4 мес., 1970 г. (г)	+58,43 ***	+2,86	+53,43 ***	⊹-14,44	-85,12 ***	+11 ,4 8	+79,51 ***
Живой вес петухов в 4 мес., 1969 г. (г)	+31,70	+27,93	49,51	0 -	-11,22	~75,42 *	+103,68*
Живой вес петухов в 4 мес., 1970 г. (г)	-[-26,39	-8,96	59,98 **	+70,75 **	55,47	-46,43	+87,46 *
Яйценоскость кур, 1969 г. (число янц)	+2,13	+10,76 ***	-2,79	-+4,87	8,39*	+1,60	+5,27*
Яйценоскость кур, 1970 г. (число яиц)	+1,71	+11,68 ***	-4,94	1,03	-6,05	—17,16 ***	+20,42 ***
Вес яиц, 1969 г. (г)	+0,63	-0,32	+0,24	+0,01	-0,03	+0,32	-1,44
Вес яиц, 1970 г. (г)	+1,27*	-4,65 **	+0,55	-0,36	+0,26	+2,21	-1,81

^{*} P < 0.05 (по Стьюденту). ** P < 0.01. *** P < 0.001.

низкую частоту данного аллеля (0,07) в изучаемой популяции к началу ее исследования, явившуюся результатом действовавшего в популяции естественного отбора на протяжении ее создания. Что же касается жизнеспособности носителей В₃ антигена по сравнению со сверстниками, не несущими этого антигена, то она оказалась неодинаковой в различные периоды индивидуального развития. Их достаточно высокая жизнеспособность в период эмбриогенеза и в период яйценоскости сочеталась со снижением ее в ювенальный период.

Наибольшей частотой в изучаемой популяции характеризовались аллели B^2 (0.507) и E^3 (0.711). Было показано, что частота этих генов достоверно увеличивается в результате искусственного отбора кур в стаде по признаку яичной продуктивности. Обнаружено, что ежегодно куры — обладатели аллеля B^2 на 10.7-11.68 яйца, а аллеля E^3 – на 5.25-20.42 яйца превосходили (P < 0.05-0.001) кур, которые в своем генотипе имели другие аллели этих локусов. Можно полагать, что систематический отбор по яйценоскости (естественный — большая возможность оставления потомства и искусственный -- выбор петухов от более продуктивных матерей) способствовал преимущественному сохранению и накоплению именно этих адледей в В- и Е-системах групп крови в данной инбредной популяции. Получены достоверные различия, свидетельствующие о более высоком живом весе птицы с аллелями В¹, В⁴ и Е³ и более низком — с аллелями В3, Е1, Е2. Известная отрицательная корреляция яйценоскости с весом яиц нашла свое отражение в несколько более низком весе яиц у кур с лучшей яйценоскостью (обладатели генов В² и Е³).

Отмеченные связи групп крови с продуктивными качествами не могут быть безраличны для популяции в целом. В процессе отбора неминуемо одни антигенные факторы имеют шансы сохраниться и увеличить свою частоту, частота других может падать вплоть до полной элиминации. Этот процесс осуществляется длительно за счет противоречивого характера селективных связей. Из материалов табл. 1 видно, что в большинстве случаев один и тот же аллель групп крови находится в коррелятивных взаимоотношениях не с одним, а с несколькими интересующими нас продуктивными признаками одновременно, причем положительная связь с одним признаком, дающая какие-либо преимущества, может сочетаться нежелательным образом с другими. Кроме того, один и тот же маркерный ген коррелирует по-разному с желательным признаком, например с жизнеспособностью, в разные периоды онтогенеза. При этом аддитивное действие генов на одной стадии роста и развития может сменяться доминированием или сверхдоминированием на другой. Все это является предпосылками сохранения полиморфизма. И все же в результате перекрывания одного признака другим в силу их неодинаковой значимости и разной степени превосходства маркированных типов концентрация отдельных генов может возрастать или падать. Следовательно, несмотря на наличие механизмов, поддерживающих полиморфизм, селективная неравноценность особей, маркированных по локусам групп крови, может приводить к преимущественному распространению определенных аллелей.

Коррелятивные связи между группами крови и продуктивными качествами у кур были отмечены и в ряде других исследований. Показано изменение частоты генов В системы групп крови в ходе отбора кур по яйценоскости (¹, ²) и весу яиц (³), связь отдельных аллелей В- и Е-систем групп крови с яйценоскостью, весом яиц и весом тела (⁴). Имеются сообщения о более высоком весе птицы с одними антигенами по сравнению с птицей, имеющей другие антигены В-системы (⁵-¬¹). Наблюдались различия в жизнеспособности кур с разными аллелями В-системы кур (8-¬¹¹), причем эти различия не всегда были однозначными на всех этапах онтогенеза (¹¹¹).

Надо полагать, что описанные у кур корреляции групп крови с продуктивными качествами, складывающиеся под влиянием отбора (естест-

венного и искусственного) и им поддерживающиеся, могут контролироваться человеком. Выявление подобных связей при закладке и совершенствовании линий, учет их при отборе и подборе птицы позволит сделать процесс селекции более эффективным.

Институт общей гепетики Академии наук СССР Москва Поступило 13 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 S. Petrovsky, I. Macha et al., Polymorphismes biochim animaux, Paris, 1967. 2 M. Papp, Magy. Allatorv. Lap., 23, 580 (1968). 3 H. Hilfiker-Hengartner, Zs. Tierzucht u. Züchtungsbiol., 84, 1 (1967). 4 M. Papp, L. Szajko, J. Schmidt, XII Europ. Conf. Anim. Blood Groups Biochem. Polymorphism, Budapest, 1972. 5 W. E. Briles, Poultry Sci., 35, No. 5 (1956). 6 W. D. Kimmel, Anim. Breed. Abstr., 30, 251 (1960). 7 E. M. McDermid, Proc. IX Europ. Anim. Blood Groups Conf., Prague, 1965. 8 M. P. Hansen, G. R. J. Law, Resum. de las comun. sci., abstr. et sci. comunicationes, Madrid, 1970, p. 55. 9 M. P. Hansen, J. N. Van Zandt, G. R. J. Law, Poultry Sci., 46, No. 5 (1967). 10 D. G. Gilmour, J. R. Morton, Gen. Res., 15, No. 3 (1970). 11 W. E. Briles, C. P. Allen, Genetics, 46, 1273 (1961).