УДК 669.788

Академик АН УССР Г. В. КАРПЕНКО, В. С. ФЕДЧЕНКО, Ю. В. ЗИМА, И. И. ВАСИЛЕНКО

РАЗРУШЕНИЕ ВЫСОКОПРОЧНОЙ СТАЛИ В ГАЗОВОЙ СРЕДЕ

При воздействии газообразного водорода на развивающуюся в высокопрочной стали трещину происходит снижение эффективной поверхностной энергии (энергия разрушения) у на 20—30% от первоначальной величины, что облегчает развитие трещины и приводит к ускоренному разрушению металла (1-5). Показано также, что диффузионные процессы не играют существенной роли в процессе распространения трещины в водоролной атмосфере.

В настоящей работе проводилось исследование процесса разрушения стали У8А (закаленной и отпущенной при 200°С) как в вакууме, так и при адсорбционном воздействии газообразного водорода, сухого сероводо-

Таблица 1

Изменение эффективной поверхностей энергии γ и процентного соотношения различных элементов микроструктуры излома стали У8А

Среда	ү∙10-², дж/см²	Количество элементов микро- структуры изломов, %		
		квазискол	межзерен- ное раз- рушение	ямочное строение
Вакуум H ₂ HCl H ₂ S	8 6 6 4	70 25 10 15	20 60 70 70	10 15 20 5

рода и хлористого водорода. Испытания осуществляли при комнатной температуре атмосферном павлении. Поверхности полученных изломов полвергались ронофактографическому анализу при помощи пвуступенчатого метопа пластико-угольных отпечатков. Методика, описанная в работах $\binom{1}{7}$, $\binom{6}{7}$, позволила определить величину эффективной поверхности энергии в перечисленных выше средах.

Сероводород получали в аппарате Киппа и последовательно пропускали через дистиллированную воду, хлористый кальций, силикагель, пятиокись фосфора, после чего газ вымораживали в холодильнике ($t=-100^{\circ}$). Газовые примеси с более низкой температурой кипения непрерывно откачивались. После заполнения сероводородом холодильник отключался от фильтра и откачивался 20 мин. для очистки от остатков газовых примесей. При повышении температуры до -50° H₂S, испаряясь, заполнял рабочую камеру с образдом. Холодильник с последними фракциями газа и вымороженными парами воды отключался. Хлористый водород получали при реакции концентрированных соляной и серной кислот, после чего сушили, пропуская через концентрированную H_2SO_4 . Перед впуском в рабочую камеру газ вымораживался в холодильнике аналогично H_2S .

Результаты исследования приведены в табл. 1. Сравнительно с первоначальной величиной ($8 \cdot 10^{-2}$ жд/см²) сероводород снижает γ на 50%, а водород и хлористый водород — на 25%. Снижение эффективной поверхностной энергии происходит немедленно после впуска газа в рабочую камеру, а скорость развития трещины резко возрастает (для H_2 и HCl до 20 мм/мин, для H_2 S до 50 мм/мин) при нагрузке, равной $P_{\rm R}$, где $P_{\rm R}$ — нагрузка, необходимая для начала развития трещины.

Электронофрактографический анализ поверхности изломов образцов, разрушенных в вакууме, показал, что разрушение в этом случае харак-

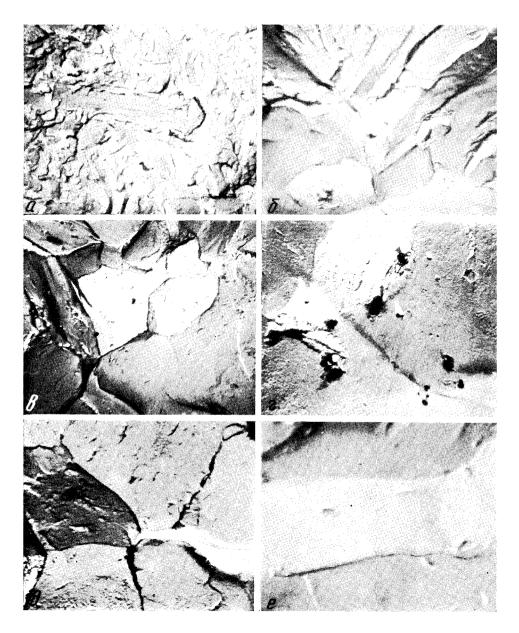


Рис. 1. Электропные фрактограммы поверхпостей излома стали У8А; 3000 \times . a, δ — разрушение в вакууме; ϵ — разрушение в газообразном водороде; ϵ , θ — разрушение в сухом HCI; ϵ — разрушение в сухом H2S

теризуется перемеживанием таких элементов микроструктуры излома, как квазискол, ямочное строение и отдельные области межзеренного разрушения (рис. $1\ a,\ \delta$). Исходя из соотношения этих составляющих микроструктуры излома (табл. 1), можно считать, что доминирующую роль при разрушении в вакууме имеет квазискольный (полухрупкий) механизм распространения трещины (рис. $1\ a$).

Как под влиянием водорода (рис. 1 в), так и хлористого водорода (рис. 1 e) и сероводорода (рис. 1 e) четко фиксируется преобладающее распространение трещины по границам зерен. Следует отметить, что при воздействии газообразного НСІ фасетки межзеренного разрушения выглядят более крупными, чем в изломах образцов, разрушенных в H₂ и H₂S (рис. 1 e - e). При воздействии газообразного водорода фасетки межзеренного разрушения мельче, чем в HCl и H₂S. Некоторое увеличение размера элементарных фасеток межзеренного разрушения при воздействии газообразных HCl и H₂S (особенно первого), возможно, объясняется следующим образом. У кончика трещины, продвигающейся по границам зерен, при адсорбции газов HCl и H₂S концентрируются напряжения такой величины, которая содействует раскалыванию отдельных зерен по их телу, при этом незначительно изменяется направление движения трещины, о чем свидетельствует незначительное изменение плотности фрактограмм (рис. $1 \ e^{-e}$) сравнительно с фрактограммами, полученными с излома в водороде (рис. 1 в). Хотя процент межзеренного разрушения в HCl и H₂S отличается незначительно, следует отметить, что межзеренное распространение трещины в HCl совершалось медлениее, с большим сопротивлением, чем в H₂S. Это иллюстрируется следами сдвиговых процессов, локальных вырывов (рис. 1 ϵ , ∂), повсеместно наблюдаемыми на фасетках межзеренного разрушения в НСІ. Поверхность аналогичных фасеток в H_2S более гладкая, без яркой субструктуры (рис. 1 e).

Таким образом, так же как и в случае газообразного водорода, воздействие сухого сероводорода и хлористого водорода в результате адсорбции приводит к уменьшению эффективной поверхностной энергии, следствием чего является отмеченное снижение сопротивления развитию трещины. В основном полухрушкое (квазискольное) развитие трещины в вакууме сменяется хрушким межзеренным разрушением при воздействии газовой среды. Анализ электронных фрактограмм подтверждает тот факт, что наибольшая скорость и наименьшее сопротивление развитию трещины наблюдается в обезвоженном сероводороде.

Физико-механический институт Академии наук УССР Львов Поступило 5 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. В. Карпенко, И. И. Василенко и др., ДАН, 185, № 5 (1969). ² И. И. Василенко, М. Г. Хитаришвили и др., Физ.-хим. мех. матер., № 2 (1969). ³ G. G. Напсоск, Н. Н. Јоhnson, Trans. Met. Soc. AIME, 236 (1936). ⁴ В. С. Федченко, И. Е. Гайдаренко, И. И. Василенко, Физ.-хим. мех. матер., № 3 (1972). ⁵ D. P. Williams, H. G. Nelson, Met. Trans., 1, 63 (1970). ⁶ В. В. Панасюк, Предельное равновесие хрупких тел с трещинами, Киев, 1968. ⁷ С. Е. Ковчик, Сборн. Вопросы механики реального твердого тела, в. 3, Киев, 1964.

6 ДАН, т. 209, № 4