Доклады Академии наук СССР 1973. Том 209, № 4

УДК 617.7:612.015.1

БИОХИМИЯ

Б. С. КАСАВИНА, Н. Б. ЧЕСНОКОВА

ЛИЗОСОМАЛЬНЫЕ ГИПРОЛАЗЫ ТКАНЕЙ ГЛАЗА

(Представлено академиком А. И. Опариным 27 Х 1972)

Многие деструктивные тканевые процессы связаны с изменением в локализации и активности лизосомальных гидролиз (1, 2). Лизосомы выявлены в большинстве тканей позвоночных. Тем не менее, существуют лишь единичные работы по изучению лизосом тканей глаза и их роли в натологии органа зрения, причем большинство этих работ относятся к хрусталику и сетчатке. Так, показано наличие лизосом в эпителии хрусталика и выдвинута гипотеза об участии этих частиц в развитии катаракты (3, 4); обнаружено изменение активности лизосомальных ферментов при наследственной дегенерации сетчатки (5, 6).

Цилиарное тело, его секрет — камерная влага, а также стекловидное тело играют значительную роль в обмене тканей глаза и его нормальном функционировании. Исследование кислых гидролаз этих тканей может послужить основой для изучения патологических состояний органа зрения, а также механизма фармакологических воздействий.

В настоящей работе исследовали активность гидролитических ферментов: кислой фосфатазы, β-глюкозидазы, β-галактозидазы, гвалуронидазы и кислых ДНКазы, РНКазы — в цилиарном теле, камерной влаге и стекловидном теле. Изучали распределение кислых гидролаз в субклеточных фракциях цилиарного тела.

Работа проведена на 60 кроликах-самцах породы пинниилла весом 2—2,5 кг. Методы определения активности ферментов и фракционирования цилиарного тела описаны в предыдущих работах (7-8). В гомогенатах тканей определяли свободную и общую активность ферментов. Свободную активность исследовали в свежеприготовленном гомогенате тканей при инкубации проб в течение 30 мип., а общую активность и активность ферментов в субклеточных фракциях цилиарного тела—в условиях полного разрушения субклеточных структур после добавления в инкубационную среду детергента тритона X-100. Активность гналуронидазы определяли после инкубации проб в течение 2 час.

В табл. 1 представлены результаты определения активности кислых гидролаз в цилнариом теле, камерной влаге и стекловидном теле. Кислая фосфатаза, ДНКаза и РНКаза были выявлены во всех трех тканях; активность β-глюкозидазы и β-галактозидазы используемыми методами удалось обнаружить лишь в цилиарном теле, а гиалуронидазы—в цилиарном теле и камерной влаге. Таким образом, в стекловидном теле гликозидазную активность нам выявить не удалось.

При добавлении в инкубационную среду детергента тритона X-100, вызывающего выход ферментов из лизосом в цитоплазму, происходило увеличение активности исследуемых ферментов не только в тканях, но и в камерной влаге. Этот факт говорит о возможности проникновения в камерную влагу мембранных структур, обладающих ферментативной активностью.

При сравнении активности ферментов оказалось, что в стекловидном теле и камерной влаге, по сравнению с цилиарным телом, большая актив-

_	Активность, µмол/мин на 1 г белка				
Фермент	цилиарное тело	камерная влага	стекловидное тело		
Кислая фосфатаза					
Свободная	5.7 ± 0.26	$11,3\pm0.63$	$9,4\pm0.06$		
Общая	11,6+0,25	73.0 ± 1.8	$46,1\pm0,23$		
% свободной от общей	50.7	15.2	20.3		
ДНКаза] 00,.	10,2	20,0		
Свободная	3.6 ± 0.21	$19,9\pm0,72$	32,4+1,1		
Общая	4.9 ± 0.29	$65,2\pm2,3$	$53,4\pm 2,5$		
% свободной от общей	72,4	32.8	60.8		
РНКаза	,	,	,		
Свободная	1.9 ± 0.07	$22,6\pm1,2$	16.1 ± 1.1		
Общая	3,2+0,11	$51,5\pm2,7$	66,5+2,9		
% свободной от общей	60,5	44,0	$\frac{66,5+2,9}{26,8}$		
β-Глюкозидаза	·				
Свободная	$0,39\pm0,009$	0	0		
Общая	1,14+0,021	0	0		
% свободной от общей	34,2				
β-Галактозидаза			_		
Свободная	$1,01\pm0,016$	0	0		
Общая	$1,42\pm0,027$	0	Ü		
% свободной от общей	71,4				
Гиалуронидаза	40 55 4 09	005 0 / 44 5	0		
Общая	$19,57\pm1,03$	$285,0\pm11,7$	0		

Таблица 2
Распределение кислых гидролаз в субклеточных фракциях цилиарного тела
(% от суммарной активности)

Фракция	Кислая фосфатаза	β-Глюкози- даза	β-I'алакто- зидаза	Гиалуро- нидаза	ДНКаза	РНК-аза
Ядерная	2,9	3,4	3,9	2,1	3,2	3,4
Митохондриальная	53,3	60,8	67,0	57,2	58,7	56,9
Микросомальная	34,9	29,0	48,3	32,7	25,0	28,0
Супернатант	8.8	6.8	40,8	8.0	43,1	11,7

ность ириходится на 1 г белка гомогената, что связано с отсутствием структурных белков в камерной влаге и с относительно низким их количеством в стекловидном теле. Общая активность кислых нуклеаз в камерной влаге и стекловидном теле приблизительно одинаковая, а общая активность кислой фосфатазы в камерной влаге гораздо выше, чем в стекловидном теле, что, по-видимому, связано с участием этого фермента в процессе секреции камерной влаги.

При изучении распределения ферментов в субклеточных фракциях цилиарного тела было показано (табл. 2), что больше половины исследуемых кислых гидролаз сосредоточено в митохондиальной фракции, а около трети — в микросомальной. Наблюдается разная степень выхода ферментов в супернатант, что говорит о различной прочности связи ферментов с мембраной лизосом цилиарного тела. Так, β-глюкозидаза оказалась ферментом, наиболее прочно связанным с мембранными структурами, а ДНКаза — наименее.

Электронная микроскопия митохондриальной фракции цилиарного тела (рис. 1a) показала, что в ней содержатся лизосомы, различающиеся по электронной плотности, размером от 0,5 до 2,0 µ. Таким образом, в этой фракции присутствуют вторичные лизосомы, функциональная ак-

тивность которых выражена в разной степени. Лизосомы микросомальной фракции (рис. 16) размером около 0,2µ сходны с описываемыми в лите-

ратуре первичными лизосомами (рис. 1 см. вклейку к стр. 957).

Специальных сообщений о лизосомах цилиарного тела в литературе мы не встречали. Известно, что двухслойный эпителий цилиарного тела, секретирующий камерную жидкость, эмбрионально является продолжением нейтроэпителиальных слоев сетчатки. Проведенное в настоящей работе фракционирование гомогената цилиарного тела с электронномикроскопическим контролем показало, что по седиментационным характеристикам, а также морфологически и ферментативно лизосомы цилиарного тела схолны с лизосомами пругих тканей.

Несмотря на то что кислые гидролазы найдены в различных тканях, их присутствие в секретах желез мало изучено. Камерная влага служит питательной средой для бессосудистых тканей глаза, в нее поступают продукты их метаболизма. Камерная влага обладает также бактерицидными свойствами. Из указанных функций влаги следует необходимость присутствия в этой внутриглазной жидкости гидролитических ферментов. И действительно, несмотря на очень незначительное содержание белка в этой прозрачной жидкости, активность гидролитических ферментов в ней довольно высокая. Оказалось, что активность гидролаз частично связана с мембранными структурами, которые могут поступать во влагу из секретирующего ее цилиарного тела либо из омываемых влагой тканей. Постунление ферментов в камерную жидкость находится под гормональным контролем (8). Секреция дизосомальных гидролаз сравнительно хорошо изучена in vitro, но очень мало известно о секреции этих ферментов in vivo (9). Кислые гидролазы камерной влаги являются хорошим объектом для исследования внеклеточной роли лизосом, и изучение факторов, контролирующих секрецию лизосомальных гидролаз, может дать новую информацию о различных физиологических и патологических процес-

Несмотря на то что химический состав стекловидного тела хорошо изучен, мало известно о метаболизме этой ткани и о происхождении и обмене его макромолекул. Лишь в последние годы стали признавать в стекловидном теле наличие ограниченной ферментативной активности, необходимой для контроля концентрации макромолекул. Однако сравнительно недавно было показано, что в протоплазме гиалоцитов, основного вида клеток стекловидного тела, имеются лизосомы (10), что подтвердило предположение о том, что гиалоциты стекловидного тела обладают фагоцитарной активностью (11). Присутствие кислой фосфатазы было также обнаружено в фибробластах этой ткани (12). В настоящей работе показано присутствие в стекловидном теле кислой фосфатазы, а также ДНКазы и РНКазы, что еще раз подтверждает наличие в стекловидном теле фагоцитарной активности. В этой ткани мы не обнаружили гликозплазной активпости. Возможно, что в стекловидном теле в нормальных условиях гликозидазы малоактивны. Это обосновано тем, что гиалуроновая кислота — основной гликозамингликан стекловидного тела — должна находиться в высокополимерном состоянии. Большие молекулы гликозамингликанов оказывают стабилизирующее действие на коллагеновую сеть стекловидного тела. и любой фактор, умельшающий размер молекул гликозамингликанов, может повлиять на стабильность геля и вызвать разжижение стекловидного тела. Кроме того, от размера молекул гликозамингликанов зависит состояние барьера сстчатка — стекловидное тело $(^{13})$.

Гидролитические ферменты цилиарного тела, камерной влаги и стекловидного тела чувствительны к действию кортикостериодов (¹⁴). Весьма вероятно, что миогие деструктивные процессы в тканях глаза связаны с нарушением регуляции функции лизосом. Поэтому представляется важным изучение действия различных повреждающих глаз факторов, а также фармакологических агентов на гидролитические ферменты тканей гла-

за (ультрафиолетовое излучение, ультразвук, гипоксическое состояние, гипер- и гиповитаминозы, действие гормонов и многие другие).

Выражаем благодарность Я. Л. Караганову за выполнение электронных микрофотографий.

Московский научно-исследовательский институт глазных болезней им. Гельмгольца

Поступило 26 X 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Weissmann, In: A Symposium on the Interaction of Drugs and Subcellular Components an Animal Cells, 1968, p. 203. ²R. von Nilius, Wien, Zs. Med. Ihre Grenzgeb., 51, 572 (1970). ³A. A. Swanson, Exp. Eye Res., 5, 145 (1966). ⁴A. A. Swanson, Joe Jeter, K. W. Raley, Exp. Eye Res., 6, 35 (1967). ⁵E. M. Burden, H. W. Reading, C. M. Yates, Exp. Eye Res., 11, 140 (1971). ⁵E. M. Burden, C. M. Yates et al., Exp. Eye Res., 12, 159 (1971). ¹B. C. Kacabhha, H. B. Cepreeb, H. B. Чеснокова, ДАН, 204, 1479 (1972). ⁵B. C. Kacabhha, H. B. Cepreeb, H. B. Чеснокова, Бюлл. эксп. биол., 9, 47 (1972). ⁵J. T. Dingle, In: Lysosomex in Biology and Pathology, 2, ch. 14, 421 (1969). ¹O. M. I. Freeman, B. Jacobson et al., Exp. Eye Res., 7, 113 (1968). ¹O. M. I. Freeman, B. Jacobson et al., Exp. Eye Res., 7, 143 (1968). ¹O. M. I. Freeman, B. Jacobson et al., Exp. Eye Res., 7, 143 (1968). ¹O. M. I. Freehalmologica, 157, 231 (1969). ¹O. E. A. Balazs, In: The Amino Sugars, 2A, 401 (1965). ¹O. B. S. Kasavina, N. B. Chesnokova, Abstr. Commun. Meet. Federat. Europ. Biochem. Soc., 8, 892 (1972).