УЛК 517.948

МАТЕМАТИКА

В. Н. ЗАМЯТИН

ОТНОСИТЕЛЬНЫЕ ЧЕБЫШЕВСКИЕ ЦЕНТРЫ В ПРОСТРАНСТВЕ НЕПРЕРЫВНЫХ ФУНКЦИЙ

(Представлено академиком В. И. Смирновым 3 VII 1972)

Пусть V и L — подмножества нормированного пространства X. Чебышевским центром множества V относительно множества L назовем точку $y^* \in L$, удовлетворяющую соотношению

$$\sup_{x \in V} \|x - y^*\| = \inf_{y \in L} \sup_{x \in V} \|x - y\|. \tag{1}$$

В частности, если L=X, то получается обычное определение чебышевского центра (1). В данной заметке рассматривается задача о существовании чебышевского центра для любого ограниченного множества V, принадлежащего пространству непрерывных функций C(T), заданных на метрическом компакте T, относительно подпространств конечной коразмерности $n, n \ge 1$.

Пусть V — ограниченное множество в C(T). Рассмотрим функции

$$M(t) = \sup_{x \in V} x(t), \quad m(t) = \inf_{x \in V} x(t), \quad t \in T,$$

$$N(t) = \inf_{U(t)} \sup_{\tau \in U(t)} M(\tau), \quad n(t) = \sup_{U(t)} \inf_{\tau \in U(t)} m(\tau), \quad t \in T,$$

$$(2)$$

где U(t) пробегает все окрестности точки t. В $(^2)$ для случая C[a,b], а в $(^3)$ для случая C(T) (T- произвольный бикомпакт) было показано, что чебышевский центр существует для любого ограниченного множества V, а чебышевский радиус r множества V определяется формулой

$$r = \frac{1}{2} \max_{t} |N(t) - n(t)|.$$
 (3)

Известно, что всякий линейный функционал, определенный на C(T), имеет вид

$$f(x) = \int_{T} x(t) d\mu(t),$$

где μ — счетно-аддитивная регулярная мера, заданная на всех борелевских подмножествах из T, а интеграл понимается в смысле Радона — Стильтьеса (4). Поэтому всякое подпространство L^n дефекта n в пространстве C(T) задается системой уравнений

$$\int_{T} x(t) d\mu_{j}(t) = 0, \quad j = 1, 2, \ldots, n,$$

где $\mu_1, \mu_2, \ldots, \mu_n$ — линейно независимые меры Радона, составляющие базис аннулятора R^n подпространства L^n в пространстве $C(T)^*$, сопряженном к C(T).

В доказательствах применяется следующая характеристика подпространств конечного дефекта, обладающих свойством (E) *.

 Γ е орема A ((5), стр. 644). Подпространство $L^n \subset C(T)$ обладает

ceoйством (E) тогда и только тогда, когда:

а) для любой меры $\mu \in R^n$ существуют замкнутые множества T_{μ}^+ и T_{μ}^- образующие разложение носителя T_{μ} меры μ в смысле Хана (см. (4), стр. 144):

б) для любых мер μ' , $\mu'' \in \mathbb{R}^n$ множество $T_{\mu'} \setminus T_{\mu''}$ замкнуто;

в) мера μ'' абсолютно непрерывна относительно μ' на множестве $T_{\mu'}$.

 \H емма. Пусть функция \H u(t) полунепрерывна сверху, а v(t) — снизу, причем $u(t) \leqslant v(t)$ при всех $t \in T$.

Тогда существует множество $V \subset C(T)$ такое, что

$$u(t) = \min_{x \in V} x(t), \quad v(t) = \max_{x \in V} x(t).$$

Доказательство непосредственно следует из теоремы Катетова ((⁶), теорема 1).

 ${
m Teopema}$ 1. Пусть гиперподпространство $L^{{\scriptscriptstyle 1}}$ обладает свойством E,

а носитель T_{μ} , меры μ_1 бесконечен.

Тогда существует ограниченное множество $V \subset C(T)$, не имеющее чебышевского центра относительно L^1 .

Доказательство. Так как L^1 обладает свойством E, то, согласно теореме A, поситель T_{μ_1} можно разбить на два замкнутых непересекающихся множества $T_{\mu_1}^+$ и $T_{\mu_1}^-$ такие, что $\mu_1(e) \ge 0$, если $e \subset T_{\mu_1}^+$; $\mu_1(e) \le 0$, если $e \subset T_{\mu_1}^-$. Допустим для определенности, что множество $T_{\mu_1}^+$ бесконечно. Отделим множества $T_{\mu_1}^+$ и $T_{\mu_1}^-$ непересекающимися окрестностями $U^+ \supset T_{\mu_1}^+$, $U^- \supset T_{\mu_1}^-$ и рассмотрим последовательность точек $\{t_k\}_{k=1}^\infty$ из множества $T_{\mu_1}^+$, сходящуюся к некоторой точке t_0 . Построим семейство $\{G_k\}_{k=1}^\infty$ окрестностей точек t_k так, чтобы $\overline{G}_k \cap \overline{G}_j = \phi$ при $k \ne j$, $G_k \subset U^+$ при любом k, $d(G_k) \to 0$ при $k \to \infty$. Очевидно, $\mu_1(G_k) > 0$ при всех k. По-

ложим $G=\bigcup\limits_{k=1}^{\infty}G_{2k},\ \Gamma(G)=\overline{G}\setminus G,\ F=T\setminus\overline{G},\ \Gamma(F)=\overline{F}\setminus F.$ Тогда компакт T можно представить в виде суммы трех попарно непересекающихся

множеств $T = \hat{G} \cup F \cup \Gamma(G)$. Рассмотрим функцию

$$P(t) = \begin{cases} 0, & t \in F \cup \Gamma(G), \\ -1, & t \in G, \end{cases}$$

и гиперилоскость

$$H^{1}=\left\{ x\left(t
ight) \in C\left(T
ight) :\int\limits_{T}x\left(t
ight) d\mu_{1}\left(t
ight) =\int\limits_{T}P\,d\mu_{1}=c
ight\} .$$

Обозначим через p(t) функцию-минимум для P(t) ((7), стр. 136). Функции P(t) и p(t) непрерывны на множестве $F \cup G$ и разрывны в каждой точке множества $\Gamma(G)$. Рассмотрим множество $V = \{x(t) \in C(T) : -2 \le \le x(t) \le p(t) + 2\}$. Так как P(t) есть функция-максимум для p(t), то из (2) и леммы получается, что M(t) = p(t) + 2, N(t) = P(t) + 2, m(t) = n(t) = -2 при любом $t \in T$. Согласно (3), чебышевский радиус r множества V в пространстве C(T) равен 2. Пусть R — чебышевский радиус множества V относительно H^1 . Ясно, что $R \ge 2$. Пользуясь теоремой П. С. Урысона ((4), стр. 25), по любому $\varepsilon > 0$ можно построить $y_{\varepsilon}(t) \in H^1$ удовлетворяющую неравенству $\|x - y_{\varepsilon}\| \le 2 + \varepsilon$, $x \in V$. Следовательно, K равен 2.

^{*} Говорят, что подпространство $L \subset X$ обладает свойством (E) если для любого элемента $x \in X$ лайдется ближайший элемент $y^* \in L$, т. е. такой, что $\|x-y^*\| = \inf_{y \in h} \|x-y\|$.

Допустим теперь, что есть функция $y(t) \in H^1$, для которой

$$\sup_{x \in V} \|x - y\| = R = 2.$$

Из определения функций p(t), P(t), множества V, а также из леммы следует, что функция $y(t) \ge -1$ в любой точке компакта T и y(t) = 0 при $t \in F$. Отсюда по непрерывности получаем, что y(t) = 0 при $t \in \Gamma(F)$, в частности, $y(t_0) = 0$. Так как t_0 — предельная точка для последовательности $\{t_{2k}\}_{k=1}^\infty$, то $y(t) \ge -1$ для некоторого подмножества положительной меры из G. Поэтому $\int_{\mathbb{T}} y(t) \, d\mu_1(t) > c$, и, следовательно, множество V не

имеет чебышевского центра относительно гиперплоскости H^i . В таком случае множество $V-x_0$, $x_0 \subseteq H^i$, не будет иметь чебышевского центра относительно гиперподпространства L^i .

Теорема 2. Пусть подпространство L^n в пространстве C(T) обладает свойством (E) и носитель хотя бы одной из мер, определяющих L^n , бесконечен.

Tогда существует ограниченное множество $V \subset C(T)$, не имеющее чебышевского центра относительно L^n .

Доказательство. Предположим, что мера μ_1 имеет бесконечный носитель. Построим так же, как и в предыдущей теореме, множество V, не имеющее чебышевского центра относительно гиперплоскости $H^1 = \left\{x \in \mathcal{C}\left(T\right) : \int_{\mathcal{T}} x \, d\mu_1 = \int_{\mathcal{T}} P \, d\mu_1 = c_1\right\},$ и покажем, что V не имеет

центра относительно плоскости $H^n=\left\{x \in C\left(T\right): \int\limits_T x \, d\mu_j=\int\limits_T P \, d\mu_j=c_j, j=1,2,\ldots,n\right\}$.

Так как по доказанному $\int\limits_T y\,d\mu_1\!\!>\!\!c_1$, то остается показать, что чебы-

шевский радиус множества V относительно H^n равен 2. Зафиксируем $\varepsilon_1 > 0$ и пусть $\varepsilon > 0$ — любое число, меньшее $\varepsilon_1 / 2$. Так же, как и в теореме 1, строим множество G и функцию $y_{\varepsilon}(t) \in H^1$, для которой $\|x - y_{\varepsilon}\| \leq 2 + \varepsilon$, $x \in V$, причем $y_{\varepsilon}(t)$ отлична от P(t) лишь на подмножестве W из G как угодно малой меры. Положим

$$\int_{T} y_{\varepsilon} d\mu_{j} = c_{j} + \alpha_{j}(\varepsilon), \quad j = 1, 2, \ldots, n.$$

Поскольку L^n обладает свойством E, то согласно характеристике такого подпространства, приведенной в теореме A, множество G можно выбрать так, что меры μ_2, \ldots, μ_n будут абсолютно непрерывны относительно μ_1 . Поэтому можно считать, что $\mu_i(W) < \delta$ при любом j ($\delta = \delta(\varepsilon)$, $\delta \to 0$ при $\varepsilon \to 0$). Отсюда при $\varepsilon \to 0$ $s = \max |\alpha_j(\varepsilon)| \to 0$. Согласно лемме Хелли ((4), стр. 101), существует функция $\psi_\varepsilon(t)$ такая, что

$$\int_{T} \psi_{\varepsilon} d\mu_{j} = -\alpha_{j}(\varepsilon), \quad \|\psi_{\varepsilon}\| \leq \delta(s),$$

где $\delta(s) \to 0$ при $\varepsilon \to 0$. Поэтому можно выбрать такое ε , что функция $\bar{y}_{\varepsilon} = y_{\varepsilon} + \psi_{\varepsilon}$ принадлежит H^n и удовлетворяет неравенству $\|x - y_{\varepsilon}\| \leqslant 2 + \varepsilon_1$, т. е. R = 2.

Таким образом, множество V не имеет чебышевского цептра относительно плоскости H^n , а множество $V-x_0$, $x_0 \in H^n$, не имеет центра относительно подпространства L^n .

Теорема 3. Если каждая из мер $\mu_1, \mu_2, \ldots, \mu_n$, определяющих подпространство $L^n \subset C(T)$, имеет конечный носитель, то для всякого ограниченного множества $V \subset C(T)$ существует чебышевский центр относительно

 $no\partial n$ постранства L^n .

Доказательство. Пусть R — чебышевский радиус множества V относительно L^n , $T_{\mu_j} = \{t_i{}^j, \ldots, t_{p_j}^j\}$ — носитель меры μ_i , $i=1,2,\ldots,n$. Пусть $\{\epsilon_m\}_{m=1}^\infty$ — последовательность положительных чисел, сходящаяся к нулю, а $\{y_m\}_{m=1}^\infty$ — последовательность функций из L^n , для которых выполнено неравенство

$$|x(t) - y_m(t)| \le R + \varepsilon_m, \quad x \in V, \quad t \in T, \quad m = 1, 2, \dots$$

Не теряя общности, можно считать, что последовательность $\{y_m\}_{m=1}^{\infty}$ сходится во всех точках носителей $T_{\mu_1,\ldots,T_{\mu_n}}$.

Положим

$$\alpha_k^j = \lim_{m \to \infty} y_m(t_k^j), \quad 1 \leqslant j \leqslant n, \quad 1 \leqslant k \leqslant p_j.$$

. Нетрудно показать, что

$$N(t_k^j) - R \leqslant \alpha_k^j \leqslant n(t_k^j) + R, \quad 1 \leqslant j \leqslant n, \quad 1 \leqslant k \leqslant p_j. \tag{4}$$

Так как $R \ge r$, то из (3) следует, что $n(t) + R \ge N(t) - R$, $t \in T$. Поскольку функция n(t) + R полунепрерывна снизу, а N(t) - R — сверху, то из неравенства (4) и теоремы Катетова вытекает существование непрерывной функции y(t), удовлетворяющей условиям

$$N(t) - R \le y(t) \le n(t) + R, \quad t \in T, \tag{5}$$

 $y(t_k^j) = \alpha_k^j, \quad k = 1, 2, \ldots, p_j, \quad j = 1, 2, \ldots, n.$

Легко проверить, что $y(t) \in L^n$. Так как

$$n(t) \leq x(t) \leq N(t), \quad t \in T,$$

то, учитывая неравенство (5), получим

$$||x - y|| \le R$$

при любом $x \in V$. Следовательно, y(t) — чебышевский центр множества V относительно L^n .

Теорема 4. Чебышевский центр относительно подпространства $L^n \subset C(T)$ существует для любого ограниченного множества $V \subset C(T)$ тогда и только тогда, когда носители каждой из мер $\mu_1, \mu_2, \ldots, \mu_n$, определяющих подпространство L^n , конечны.

Эта теорема вытекает из теорем 2, 3 и из очевидного факта, что если подпространство L^n не обладает свойством (E), то элемент $x_0 \in C(T)$, для которого в L^n нет ближайшего, как раз является тем множеством в C(T), для которого в подпространстве L^n нет чебышевского центра.

Автор благодарит А. Л. Гаркави и М. И. Кадеца за постановку задачи и полезные советы.

n nonesable cobern.

Адыгейский государственный педагогический институт Майкоп Поступило 7 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Л. Гаркави, Изв. АН СССР, сер. матем., **26**, 87 (1962). ² В. Н. Замятин, М. И. Кадец, Укр. респ. сборн., **7**, 20 (1968). ³ В. Н. Замятин, Сборн. Первая научная конференция молодых ученых Адыгеи, **2**, 1971. ⁴ Н. Данфорд, Дж. Шварц, Линейные операторы, ИЛ, 1962. ⁵ А. Л. Гаркави, Изв. АН СССР, сер. матем., **31**, 3, 641 (1967). ⁶ М. Каtetov, Fund. math., **38** (1951). ⁷ Б. З. Вулих, Введение в теорию полуупорядоченных пространств, М., 1961.