УДК 548.736

Э. А. КУЗЬМИН, В. В. ИЛЮХИН, академик Н. В. БЕЛОВ

ОБ АЛГОРИТМЕ РАСШИФРОВКИ РЕАЛЬНОЙ ФУНКЦИИ ПАТЕРСОНА ПО ДВУМ ПРОИЗВОЛЬНЫМ (КРАТНЫМ) ПИКАМ

Приемы расшифровки функции Патерсона P(vvw) по одному кратно-

му пику разобраны в $(^{4})$.

Здесь рассматривается алгоритм раскрытия непрерывной межатомной функции (общий случай, ф.г. Р1), в которой фиксируется несколько (по меньшей мере два) кратных максимумов. Поскольку в общем случае кратные патерсоновские векторы отражают закономерности псевдосимметричного расположения атомов в структуре и каждому кратному пику функции Патерсона соответствует совокупность равных и параллельных отрезков, соединяющих атомы реальной структуры, то отмечаемому заголовком случаю отвечаст наличие в структуре нескольких (двух) совокупностей отрезков. Не уменьшая общности, примем, что таких совокупностей две и в них n_1 и n_1' пар атомов связаны соотношениями

$$\mathbf{r}_{12} = \mathbf{r}_{34} = \ldots = \mathbf{r}_{2n_1 - 1, 2n_1}, \tag{1}$$

$$\mathbf{r}_{1'2'} = \mathbf{r}_{3'4'} = \dots = \mathbf{r}_{2n_1'-1,2n_1'} \tag{2}$$

и нет дополнительных связей между этими группами отрезков *.

Полагая (допуская), что непрерывную функцию электронной плотности можно разбить на области, относящиеся к индивидуальным атомам $\left(\rho\left(r\right)=\sum_{k}^{\infty}\rho\left(r-r_{k}\right)$ или сокращенно $\sum_{i}^{\infty}\rho_{i}\left(r_{k}\right)$ (3, 10), записываем функцию Патерсона в виде совокупности максимумов (все обозначения по (3)):

$$P(\mathbf{r}) = \sum_{i=i'=1}^{N} \sum_{k=k'} p_{ii'}(\mathbf{r}_{kk'}). \tag{3}$$

Выделяем среди этих максимумов (3) следующие (нас интересующие):

1) Начальный пик
$$p_{ii}(0) = \sum_{i} \rho_i^2$$
. (3')

2) Два пика кратности n_1 на концах линейки, параллельной $r_{2n_1-1,2n_1}$ и проходящей через начало:

$$p_{2n_1-1,2n_1}(\pm \mathbf{r}_{2n_1-1,2n_1}). \tag{4}$$

3) Два пика кратности n_1 на такой же линейке, но парадлельной r_{2n1}'-1,2n1'.

4) На линейках, параллельных $\mathbf{r}_{2n_4-1,2n_1}$ (4), пики **, порождаемые парами атомов, входящих в совокупность n_1 отрезков (исключая векторы

шифровки функции Патерсона.

Расшифровка функции Патерсона при наличии в структуре многоугольников, построенных на векторах $\mathbf{r}_{2n_1-1,2n_1}$ и $\mathbf{r}_{2n_1'-1,2n_1'}$ рассмотрена в (2). ** Опускаем вопрос о кратности этих пиков, так как она не существенна для рас-

(4)). Эта группа подразделяется:

$$\sum_{l=1}^{2n_1-2} \sum_{m=3}^{2n_1} p_{lm} (\pm \mathbf{r}_{lm}) \quad \text{при } m > l+1; \qquad l+m=2t;$$
 (5)

на $n_1(n_1-1)$ пиков в серединах линеек (концы векторов между одноименными концами отрезков)

далее на $n_1(n_1-1)$ пиков на «правых» концах линеек:

$$\sum_{l=2}^{2n_1-1}\sum_{m=3}^{2n_1}p_{lm}\left(+\mathbf{r}_{2n_1-1,\ 2n_1}\pm\mathbf{r}_{lm}\right)$$
 при $l=2t+1,\ l+m=2t+1;$ (6)

и, наконец, на столько же пиков на левых концах линеек при l=2t, l+m=2t+1.

5) Пики на линейках между атомами из совокупности (2) (их столько же, сколько в 4)):

$$\sum_{a=1}^{2n'_{1}-2} \sum_{b=3}^{2n'_{1}} p_{ab} \left(\pm \mathbf{r}_{ab} \right) \quad \text{при } b > a+1; \tag{7}$$

они, как и выше, развиваются на подгруппы при соотношениях между a и b: a+b=2t, a=2t, b=2t+1 и a=2t+1, b=2t.

6) Пики в вершинах параллелограммов взаимодействия (5 , 6) между атомами из двух разных совокупностей отрезков (1) и (2); среди них $2n_1n_1' + 2n_1n_1'$ пиков — концов векторов между одноименными концами самих отрезков о.с. (левыми и правыми — соответственно):

$$\sum_{l=1}^{2n_{i}-1} \sum_{a=1}^{2n'_{i}-1} p_{la} (\pm \mathbf{r}_{la}) \quad \text{при} \quad l = a;$$

$$\sum_{m=0}^{2n_{i}} \sum_{b=0}^{2n'_{i}} p_{mb} (\pm \mathbf{r}_{mb}) =$$
(8)

$$= \sum_{m=2} \sum_{b=2} p_{mb} \left(\pm \mathbf{r}_{la} + \mathbf{r}_{2n_{1}-1, 2n_{1}} + \mathbf{r}_{2n'_{1}-1, 2n'_{1}} \right) \quad \text{при} \quad m = b, \tag{9}$$

а также $2n_1n_1'$ пиков — концов векторов между левыми концами отрезков совокупности (1) и правыми концами совокупности (2):

$$\sum_{l=1}^{2n_{l}-1} \sum_{b=2}^{2n'_{1}} p_{lb} \left(\pm \mathbf{r}_{la} + \mathbf{r}_{2n_{l}-1, 2n_{l}} \right) \quad \text{при } l \neq b$$
 (10)

и столько же пиков от правых концов (1) к левым концам (2) при $m \neq a$.

7) Наконец, патерсоновские векторы между прочими $(N-2n_1-2n_1')$ атомами — как между собой, так и с атомами, подчиняющимися условиям (1) и (2).

В этом множестве отмечаем векторы

$$\sum_{p=2n_{r}+1}^{N}\sum_{s=1}^{2n_{1}}p_{p_{s}}(\pm \mathbf{r}_{p_{s}}), \qquad (11)$$

которые распадаются на четыре группы по $n_{\scriptscriptstyle 1}(N-2n_{\scriptscriptstyle 1})$ пиков: две объединяются формулой

$$\sum_{p=2n_1+1}^{N} \sum_{n_i=1}^{n_i} p_{p, 2n_i-1} (\pm \mathbf{r}_{p, 2n_i-1}), \tag{12}$$

$$\sum_{n=2n+1}^{N} \sum_{n=1}^{n_1} p_{p, 2n_1} (\pm \mathbf{r}_{p, 2n_1-1} + \mathbf{r}_{2n_1-1, 2n_1}). \tag{13}$$

На первом этапе расшифровки при построении функции минимализации примем, для определенности, в качестве вектора сдвига вектор \mathbf{R}_n до ника кратности n_1 , т. е. $\mathbf{R}_{n_1} = \mathbf{r}_{2n_1-1,2n_1}$. На $M_2(\mathbf{R}_{n_1})$ из перечисленных выme (1)-(7) сохраняются следующие максимумы (прибавляем ко всем максимумам $P(\mathbf{r})$ вектор $\mathbf{r}_{2n_t-1,2n_t}$; сохраняем начало $M_2(\mathbf{R}_{n_t})$ в начале исхолной $P(\mathbf{r})$:

1) пва максимума из 4)

$$p_{2n_1-1,2n_1}(0),$$
 (4')

$$p_{2n_1-1,2n_1}(\mathbf{r}_{2n_1-1,2n_1});$$
 (4")

2) пики в серепинах и на правых концах линеек, параллельных \mathbf{R}_{n_i} $=\mathbf{r}_{2n_1-1,2n_1}^*$, которые определяются соотношениями (5) и (6); 3) пики из параллелограммов взаимодействия, которые заданы соотношениями (9) и (10); 4) прочие максимумы, положение которых определяется из соотношений (12) и (13).

На втором этапе принимаем $M_2(\mathbf{R}_m)$ за новую функцию Патерсона (начало переносим в пик кратности n_1 — конец вектора \mathbf{R}_{n_1}) и на ней выбираем за вектор сдвига вектор до второго сильного пика кратности $n_1' - \mathbf{R}_{n_1'} = \mathbf{r}_{2n_1'-1,2n_1'}$. Строим еще одну функцию $M_2(\mathbf{R}_{n_1'})$, по уже по $M_2(\mathbf{R}_n) = P'(\mathbf{r})$. На итоговой **

 $M_4 = M\{M_2(\mathbf{R}_{n_1}) [M_2(\mathbf{R}_{n_1})]\}$ (14)

фиксируются лишь максимумы из вершин параллелограммов взаимодействия (12) с координатами

$$\pm r_{mb} = \pm r_{la} + r_{2n_1-1,2n_1} + r_{2n_1'-1,2n_1'}. \tag{9"}$$

Так как эти пики доджны быть вершинами четырехугольников по (7), то тем самым осуществляется самый важный этап в расшифровке функции Патерсона по алгоритму двух пиков, а именно выделение четырехугольников. Положение всех четырех вершин конкретного четырехугольника известно: одна — нулевой пик (3'), вторая отстоит от (3) на $\mathbf{R}_{ni'}$ согласно условию (4), две другие определяются из (9") и (10) при закреплении бегущих индексов т и b вектора гть. Отправляясь теперь от основной функции Патерсона P(uvw), используем полученный четырехугольник в качестве выделяющего многоугольника, т. е. строим три M_2 по векторам до его вершин: $M_2(\mathbf{R}_{n_1}), M_2(\mathbf{r}_{mb}), M_2(\mathbf{r}_{mb} - \mathbf{R}_{n_1})$. После объединения трех карт функций выделения путем простого совмещения начал на результирующей M_4 должна остаться копия структуры.

Принципиально (см. (7)) этой стадии (построение одной M_4) достаточно для получения функции распределения электронной плотности. Однако, учитывая возможность для патерсоновских векторов утонуть среди фона и вероятность проникновения ложных максимумов на М-функцию, аналогичный процесс построения суммарных ${}^{i_1}\!M_4$ (где i_1' меняется от 1 до $2n_i n_i'$) желательно осуществить для каждого из четырехугольников,

фиксированных на (14) (меняя бегущий вектор \mathbf{r}_{mb}) ***.

В итоге мы получаем серию функций минимализации четвертого ранга $M_{i_1}, \ldots, 2^{n_i n_i} M_{i_i}$. Из дальнейшего анализа исключаем те из них, кото-

** Указанная форма записи означает: для построения $M_2(\mathbf{R}_{n_i'})$ осуществляем сдвиг на $\mathbf{R}_{n_{i'}}$ двух карт функции $M_2(\mathbf{R}_{n_i})$, которая получена ранее при сдвиге копий P(uvw) на вектор \mathbf{R}_{n_1} .

*** Среди $2n_1n_1'$ вершин параллелограммов всегда выбираем одну из двух, связан-

ных центром инверсии в точке $1/2(\mathbf{R}_{n_1} + \mathbf{R}_{n_1})$.

^{*} Пики, расположенные на линейках, параллельных $\mathbf{r}_{2n_1'-1,2n_2'}$, должны исчезнуть на $M_2(\mathbf{R}_m)$ в силу сделанной оговорки, что атомы из разных совокупностей (1) и (2) не связаны дополнительными соотношениями.

рые содержат число максимумов, меньшее половины атомов в структуре $\binom{1}{2}N$). Оставшиеся объединяем по принципу «каждая с каждой» простым наложением карт (при совпадении начала), получаем очередную серию функций следующего ранга: ${}^{hi}M_6 = M\{{}^kM_4, {}^hM_4\}$; здесь k и k' независимы и меняются от 1 до i_1' . Указанный этап, его результат, полностью идентичен итогу объединения в шестиугольники по $\binom{7}{2}$.

Дальнейший процесс отбраковки одной копии структуры проще всего осуществить сравнением копий, полученных на стадии $^{hh'}M_6$ («статистика» копий с числом максимумов $\geq 1/2N$), и проверкой по исходной функ-

 \mathbf{u} ии P(uvw).

Суммируем сказанное в рабочую схему на ЭВМ *:

1) Рассчитываем P(uvw).

2) Выбираем два самых сильных пика, соответствующие радиусы-векторы \mathbf{R}_{n_i} и \mathbf{R}_{n_i} .

3) Строим $M_4 = M\{M_2(\mathbf{R}_{n_i})[M_2(\mathbf{R}_{n_i})]\}$ и фиксируем радиусы-векторы

до максимумов \mathbf{r}_{mb} (бегущие).

4) Строим каждую серию ${}^{i_1}M_4$ как итог трех функций: $M_2(\mathbf{R}_{n_1})$, $M_2(\mathbf{r}_{mb})$, $M_2(\mathbf{r}_{mb}-\mathbf{R}_{n_1})$. Оставляем из M_4 лишь те, которые содержат максимумы числом более ${}^{1}/{2}N$, где N — число атомов в структуре.

5) Новую серию $^{hk'}M_6$ получаем путем попарного совмещения остав-шихся карт $^{i_1'}M_4$ друг с другом (этот этап можно продлить до любой M_{2t})

и снова проводим отбраковку.

6) Сравниваем копии распределений электронной плотности и проверяем их по основной P(uvw).

7) «Статистическая» сумма копий — их усреднение — дает искомое рас-

пределение электронной плотности.

Рассматриваемый алгоритм был реализован и апробирован на реальной функции Патерсона P(uvw) триклинного кристалла— цементной фазы Y: выделение основной системы в рамках ф.г. P1 (см. (8)) достигнуто на стадии шестиугольников путем сравнения копий от разных серий M_6 . После проверки по P(uvw) «суммарная» копия структуры полностью совпала с полученной ранее в (8).

Авторы выражают благодарность В. И. Андрианову и Б. Л. Тарно-

польскому за помощь в работе.

Горьковский государственный университет им. Н. И. Лобачевского

Поступило 3 XI 1972

Институт кристаллографии им. А. В. Шубникова Академии наук СССР Москва

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ЖСХ, 12, № 3, 447 (1971). ² Э. А. Кузьмин и др., ДАН, 206, № 2 (1972). ³ С. В. Борисов и др., ЖСХ, 13, 475 (1972). ⁴ Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ЖСХ, 11, 943 (1970). ⁵ Э. А. Кузьмин, В. В. Илюхин, Н. В. Белов, ДАН, 207, № 5 (1972). ⁶ Э. А. Кузьмин, Ю. Н. Дроздов, В. В. Илюхин, Н. В. Белов, ДАН, 209, № 2 (1973). ⁷ Э. А. Кузьмин, В. В. Илюхии, Н. В. Белов, ЖСХ, 9, 820 (1968). ⁸ Р. М. Ганиев и др., Кристанлография, 16, № 4 (1971). ⁹ В. И. Андрианов, Э. Ш. Сафина, Б. Л. Тарнопольский, ЖСХ, 12, 1053 (1971). ¹⁰ Н. П. Жидков и др., Сообщ. АН ГрузССР, 66, № 1 (1972).

st На каждом этапе проводится локализация и апализ максимумов по программе (9).