Доклады Академии наук СССР 1973. Том 209. № 6

УДК 549.621.9:552.48(571.56)

ПЕТРОГРАФИЯ

В. И. КИЦУЛ, П. А. КОПЫЛОВ

НАХОДКА ГРАНАТСОДЕРЖАЩИХ УЛЬТРАОСНОВНЫХ ПОРОД НА АЛДАНСКОМ ЩИТЕ И УСЛОВИЯ ИХ ОБРАЗОВАНИЯ

(Представлено академиком Д. С. Коржинским 28 II 1972)

Гранатсодержащие ультраосновные породы на Алданском щите обнаружены нами в бассейне среднего течения р. Джелтулы — правого притока р. Тимптон, в 6 км ниже ключа Орогдакит (центральная часть щита). Эти породы образуют линзовидное тело, мощностью около 10 м, среди пестрой по составу пачки переслаивания гранатсодержащих двупироксеновых и двупироксен-амфиболовых основных кристаллических сланцев и гнейсов. гиперстен-биотитовых плагиогпейсов, грапат-биотитовых, гранат-силлиманитовых и гранат-кордиеритовых гнейсов, форстеритовых и диопсидовых мраморов, относящихся к кюриканской свите тимптонской серии архея Алданского щита.

В составе ультраосновных пород участвуют гранат, оливин, ромбический пироксен, моноклинный пироксен, амфибол, шпинель, магнетит и ильменит. Количественные отношения между минералами не одинаковы в разных частях выхода ультраосновных пород, так что петрографически могут быть выделены дуниты, перидотиты, пироксениты. Наибольший интерес представляют гранатсодержащие разности ультраосновных пород, необычные для гранулитовых комплексов как Алданского щита, так и других регионов.

Нами детально изучена наиболее многомиперальная гранатсодержащая ультраосновная порода в обр. № 3002/1 из коллекции П. А. Копылова. Эта порода в штуфе имеет темный цвет с зеленоватым оттенком и среднезернистое, почти массивное сложение. Под микроскопом устанавливается гранобластовая структура, характеризующаяся извилистым очертанием зерен с проникновением их друг в друга, включением одних мипералов в другие, что свидетельствует об одновременной их кристаллизации (рис. 1). Минеральный состав породы: гранат, оливин, ромбический пироксен. моноклинный пироксен, амфибол, шиинель, магнетит и ильменит. Химический состав приведен в табл. 1.

Гранат образует изометричные сплошные зерна размером 0.1-4 мм, имеет в штуфе темно-красный цвет, N=1.763, $a_0=11.567$ Å, d=3.835, $F^*=55.5\%$, компонентный состав (%): пироп 37.2, альмандии 41.6, гроссуляр 16.1, андрадит 2.9, спессартин 2.2.

Оливин присутствует в виде мелких, 0.05-2 мм, округлых зерен, имеющих в штуфе янтарно-желтый цвет с зеленоватым оттенком, в шлифе бесцветный, разбит грубыми трещинками, заполненными серпентинитом и пылевидным рудным минералом. $N_g=1.749,\ N_p=1.708,\ 2V=76^\circ$, по данным спектрального количественного анализа (проведен Л. С. Сукневой) содержит (вес. %): Fe_2O_3 33.8, MgO 23.0; F=43.

Ромбический пироксен представлен короткопризматическими зернами 0,1—3 мм, в штуфе светло-коричневый с красноватым оттенком, заметно

^{*} Отношение Fe к Mg + Fe.

илеохроирует: N_g — бледно-зеленый, N_p —бледно-розовый $N_g=1,705,$ $N_p=1,694,$ $2V=-70^\circ,$ $F=31,6\,\%$.

Моноклинный пироксен встречается в виде короткопризматических зерен 0.05-2 мм, в штуфе бледно-зеленый, в шлифе почти бесцветный. По данным количественного спектрального анализа содержит (вес. %): Fe₂O₃ 10.2, MgO 14.5; F=26.3. $N_{g}=1.712$, $N_{p}=1.683$, 2V=56°.

Амфибол образует удлиненнопризматические зерна, достигающие в длину 5-10 мм, в штуфе темно-зеленый, в шлифе оливковый. $N_g=1,677,$ $N_v=1,653,$ $2V=-86^{\circ},$ $cN_g=21^{\circ},$ F=29,4%.

Шпинель содержится в породе как породообразующий минерал в виде неправильной формы мелких зерен, в штуфе черная, в шлифе темно-зеле-

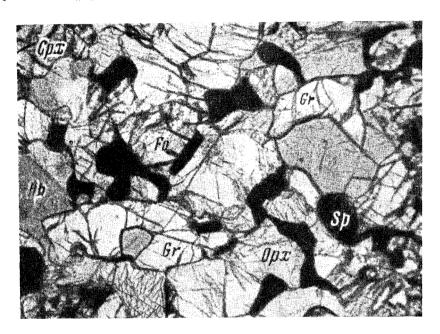


Рис. 1. Гранатсодержащая ультраосновная порода, обр. № 3002/1. Cr гранат, Fo — оливин, Opx — ромбический пироксен, Cpx — моноклинный пироксен, Hb — амфибол, Sp — шпинель, $25 \times$ Ник. +

ная. Спектральным количественным анализом определены (вес. %): Fe_2O_3 9,3, MgO 39,0, $Al_2O_3 > 25$.

Магнетит и ильменит встречаются как акцессорные минералы.

Кроме нашей находки, гранат (N=1,761) в парагенезисе с форстеритом, гиперстеном и шпинелью на Алданском щите был встречен только в одном случае (1). Обычно же в гранулитовом комплексе Алданского щита (2), как и других регионов ($^{3-6}$), гранат в ультраосновных породах отсутствует, и последние по своим минеральным ассоциациям относятся к энстатит-шпинелевой фации глубинности (7 , 8).

По экспериментальным данным (°), переход шпинелевых лерцолитов в гранатовые лерцолиты при температурах гранулитовой фации (700— 900°) осуществляется в чисто магнезиальной системе MgO—CaO—Al₂O₃— SiO₂ при $P \geqslant 18$ кбар, а в той же системе, но с отношением Fe/Mg 0,10 при $P \geqslant 16$ кбар. Отношение Fe/Mg в безгранатовых ультраосновных породах типа шпинелевых лерцолитов гранулитовой фации находится в пределах 0,10—0,30, и переход их в гранатовые лерцолиты—в свете экспериментальных даиных (°)—потребовал бы давлений более 12 кбар. Такпе давления, одпако, вряд ли достигаются в условиях гранулитовой фации метаморфизма. В изученной же нами гранатсодержащей ультра-

основной породе отношение Fe/Mg равно 0,40, и, следовательно, она могла образоваться при более низких давлениях, чем более магнезиальные ультраосновные породы. Верхний предел давления не должен быть существенно меньше 8 кбар, поскольку во вмещающих, богатых кальцием основных кристаллических сланцах устойчив гранат, появление которого при температурах гранулитовой фации в бедных щелочами кварцсодержащих толеитах с отношением в них Fe²⁺/Mg 0,39, по экспериментальным данным имеет место при давлениях не менее 8 кбар (10). Нижний предел давления, около 10 кбар, определяется по устойчивости парагенезисов кордперита с гранатом и отсутствию ассоциации гиперстена с силлиманитом во вмещающих высокоглиноземистых породах (11). Таким образом,

Таблица 1 Результаты химических анализов породы, граната, ромбического пироксена и амфибола из обр. № 3002/1 (вес. %) *

Компонент	Порода	Гранат	Ромбич. пирок сен	Амфибол
$\begin{array}{c} {\rm SiO_2} \\ {\rm TiO_2} \\ {\rm Al_2O_3} \\ {\rm Fe_2O_3} \\ {\rm FeO} \\ {\rm MnO} \\ {\rm MgO} \\ {\rm CaO} \\ {\rm Na_2O} \\ {\rm K_2O} \\ {\rm H_2O^-} \\ {\rm H_2O^+} \\ {\rm H_2O_5} \\ {\rm H.H.H.H.} \\ {\rm F} \\ {\rm F_2 = O} \end{array}$	42,58 0,74 10,80 4,13 13,43 0,37 17,50 7,48 0,21 0,37 He oup. 1,64 0,08 0,70	40,92 0,09 19,91 0,97 19,04 1,00 9,56 6,76 0,12 0,28 0,67 0,24	51,72 0,13 3,76 0,91 17,96 0,36 22,84 0,76 0,07 0,12 Не обнаруж 0,95 0,23	44,12 1,19 12,54 3,77 7,76 0,19 14,99 12,00 0,59 0,56 eH 2,07 0,45 0,03 0,01
Сумма	99,73	99,67	99,81	100,27

Кристаллохимические формулы

Гранат: $(Mg_{1,092}Fe_{1,221}^{2+}Mn_{0,065}Ca_{0,555})_{2,933}(Al_{1,800}Fe_{0,056}^{3+})_{1,856} \times (Si_{2,995}Ti_{0,005})_{3,000}O_{12} + Si_{0,139}.$ Ромбический инроксен: $(K_{0,003}Na_{0,006}Ca_{0,030})_{0,040}(Mg_{1,264} \times Fe_{0,557}^{2+}Fe_{0,026}^{3+}Mn_{0,011}Ti_{0,003}Al_{0,081})_{1,945}(Si_{1,920}Al_{0,080})_{2,000}O_{6}.$ Амфибол: $(K_{0,104}Na_{0,022})_{0,126}(Na_{0,142}Ca_{1,858})_{2,000}(Mg_{3,227}Fe_{0,937}^{2+} \times Fe_{0,410}^{3+}Mn_{0,023}Al_{0,638})_{5,225}(Si_{6,373}Ti_{0,129}Al_{1,498})_{8,000}O_{22}(OH)_{1,994}.$

интервал 8—10 кбар представляется наиболее вероятным для образования обнаруженной нами гранатсодержащей ультраосновной породы в случае ее изофациальности с вмещающими породами. Такое заключение не противоречит экспериментальным данным (⁹), если учитывать смещение равновесия шпинелевый лерцолит

т гранатовый лерцолит в сторону меньших давлений по мере увеличения в них отношения Fe/Mg до 0,40 (см. рис. 2).

Находка на Алданском щите гранатсодержащей ультраосновной породы типа гранатового лерцолита имеет важное петрологическое значение, так как свидетельствует о том, что в условиях гранулитовой фации мета-

^{*} Аналитик З. Ф. Паринова.

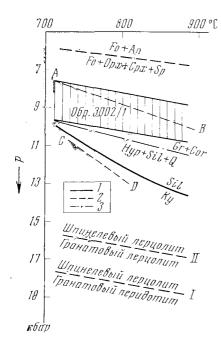


Рис. 2. Наиболее вероятная область образования гранатсодержащей ультраосновной породы типа грапатового лерцолита с отношением Fe / Mg 0.40 (заштрихована). I и II — равновесие шпинелевый лерцолит ⇒ гранатовый лерцолит соответственно для системы $Mg - CaO - Al_2O_3 - SiO_2$ и той же системы с отношением Fe / Mg 0,10 по данным (9); AB и $C\mathcal{I}$ — границы появления грапата (АВ) и исчезповения плагиоклаза в бедных щелочами кварцевых толетиях с отношением в них Fe²⁺ / Mg 0,39 данным (10); $Fo + An \rightleftharpoons Fo + Opx +$ $C_{ij}^{(1)} + C_{ij}^{(2)} + S_{ij}^{(2)} + S_{$ нии, 2 — экстраполированные экспериментальные лиции, S— расчетные линии. Cor— кордиерит, Sil— силлиманит, Ky кианит, Hyp — гиперстеп, Q — кварц, остальные обозначения минералов те же, что на рис. 1

морфизма в ультраосновных породах может достигаться не только энстатит-шпинелевая, но и гранат-оливиновая фации глубинности и что переход шпинелевый лерцолит — гранатовый лерцолит может осуществляться в широком диапазоне давлений, подобно тому как это устанавливается для эклогитового парагенезиса гранат + моноклипный пироксен.

Институт геологии Якутского филиала Сибирского отделения Академии наук СССР Якутск Поступило 24 II 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Маракушев, Проблемы минеральных фаций метаморфических и метасоматических горпых пород, М., 1965. ² Д. С. Коржинский, Тр. Центр. н.-и. геол.-разв. инст., в. 86 (1936). ³ М. И. Рабкин, Тр. Н.-и. инст. геол. Арктики, 87 (1959). ⁴ Л. Г. Ткачук, Гайворон-Завальский комплекс чарнокито-поритовых пород, Киев, 1940. ⁵ Р. Еѕкоlа, Ам. J. Sci., Bowen vol., 1 (1952). ⁶ Н. S. Washington, Am. J. Sci., 11, № 244 (1916). ⁷ В. И. Кицул, В кп. Метаморфические пояса СССР, Л., 1971. ⁸ Б. Г. Лути, Геол. рудн. месторожд., № 5 (1965). ⁹ М. J. О'Нага, S. W. Richardson, G. Wilson, Contr. Mineral. and Petrol., 32, № 4 (1971). ¹⁰ Д. Х. Грин, А. Э. Рингвуд, В кп. Петрология верхней мантии, М., 1968. ¹¹ А. А. Маракушев, Термодипамика метаморфической гидратации минералов, М., 1968. ¹² Е. Аlthaus, Neues Jahrb. Mineral. Abhandl., 111, № 2 (1969). ¹³ И. Куспрои, Г. С. Йодер мл., В кн. Петрология верхней мантии, М., 1968.