УДК 541.49+542.957

ХИМИЯ

Э. Н. ЗАВАДОВСКАЯ, Г. М. ЧЕРНЕНКО, С. И. БЕЙЛИН, О. К. ШАРАЕВ, Е. И. ТИНЯКОВА, академик Б. А. ДОЛГОПЛОСК

ИЗУЧЕНИЕ РЕАКЦИЙ РАЗЛОЖЕНИЯ π -АЛКЕНИЛНИКЕЛЬХЛОРИДОВ

В литературе имеются ограниченные сведения о поведении л-алкеннлникельгалогенидов при термическом распаде, а также при взаимодействии их с различными агентами. В настоящей работе изучен состав продуктов, образующихся при термическом, кислотном и щелочном разложении л-алкенилникельхлоридов и при их взаимодействии с электроноакцепторами, используемыми в качестве активаторов процесса полимеризации.

Термическое разложение π -алкенилникельхлоридов общей формулы RNiCl (R — кротил, пентенил и циклогексенил) исследовали при температурах $110-140^{\circ}$ в углеводородных растворах. Процесс проводили до полного распада никельорганического соединения, о чем свидетельствовало обесцвечивание углеводородного раствора. После отделения от осадка жидкие и газообразные продукты анализировали хроматически с применением внутренних стандартов. Во всех случаях в осадке Ni/Cl = 1, что указывает на отсутствие распада с выделением RCl. В табл. 1 приведены экспериментальные данные о составе продуктов термического разложения различных π -аллильных соединений никеля. Как видно из табл. 1, при термическом распаде всех изученных соединений образуются олефин (R_{+H}) ,

 $\begin{tabular}{ll} T a $ \it f \it n \it u \it q \it a \it d \end{tabular} $$ \Pi$ родукты термического разложения $$ \pi$-алкенилникельхлоридов $$ \end{tabular}$

п.п.	π-Аллильное со- единение никеля RNiCl	Растворитель	T-pa, °C	Состав продуктов, мол. %					
N.M.				R_{+H}		R_{-H}	R-R	бензол	
1	π-Кротилни- кельхлорид	Ксилол	1 40	Бутены2	23,5	Бутадиен 5,5	Дякро- тил ³ 23	_	
2	» »	Ксилол + цик- логексадиен ¹	140	»	23,0	0	$\begin{bmatrix} 183 & 26,5 \\ 26,5 \end{bmatrix}$	27,0	
	_			Циклого сеп	14,5				
3	π-Пентенилни- кельхлорид	Тол у ол	140	β-Пенте: 	130,0	Транс-пен- тадиен 10	Дипенте- нил ⁴ 20,0		
4	п-Циклогексе- нилникельхло-	»	110	Цикло- гек с ен	39	Циклогекса- диен 0	Дицик- погек с е-		
5	рид	Ноцан	11 0	10110	46	0	пил 24 28	7 10	
6	» »		140		23	$\overset{\circ}{2}$	38	5	
7	»	Нопан + цикло- гексадиен ¹	140		43	0	37	27	
8	»	Ксилол — бута-	140		20	6	26	5	
		диен ¹				Бутадиен 41,6			

¹ Диен введен в количестве 1 моль на 1 г-ат. никеля; ² состав бутенов: α -бутен (8,8), транс- β -бутен (77,5), пис- β -бутен (13,7%); ³ смесь октадиена-2,6 и 3-метилгентадиена-1,5 (соотношение 4:1); 4 4,5-диметилоктадиен-2,6.

продукт рекомбинации алкенильных групп (R-R) и в ряде случаев соответствующий диен (R_{-H}) . Выход диена всегда существенно ниже выхода олефина. Пониженный выход диена, по-видимому, связан с его полимеризацией в изучаемых системах.

На основании полученных данных можно полагать, что указанные выше продукты термического разложения образуются в результате гомолитического расшепления связей С—Ni в соответствии со схемой

RNiCl
$$\rightarrow$$
 R' + 'NiCl; $2R$.

 $R_{-H} + R_{+H}$
 $R-R$

(1)

Следует отметить, что реакция отрыва Н-атома от растворителя не играет существенной роли, на что указывает отсутствие дибензила и циклогексенилбензила при проведении термического разложения л-циклогексенилникельхлорида в толуоле.

При термическом разложении л-циклогексенилникельхлорида помимо типичных для всех л-алкенильных соединений никеля продуктов обнаружен также бензол, который может возникнуть в результате вторичной реакции диспропорционирования образовавшегося при термораспаде циклогексадиена:

$$2 \longrightarrow \bigcirc + \bigcirc. \tag{2}$$

Действительно, выход бензола существенно возрастает при проведении реакции термического разложения π -циклогексепилникельхлорида в присутствии специально введенного циклогексадиена (табл. 1, оп. № 7). Бензол и циклогексен найдены также в продуктах термораспада π -кротилникельхлорида в присутствии циклогексадиена (оп. № 2).

При проведении термического разложения в присутствии значительного избытка α-метилстирола (акцептор свободных радикалов) по отношению к π-циклогексенилникельхлориду (1009:1) количество выделяющихся продуктов практически не изменялось. Это явление характерно для распада всех органических соединений переходных металлов (реакции Караша), что свидетельствует об отсутствии радикальных стадий, протекающих в растворе. Образование продуктов рекомбинации (R — R), как известно, характерно для бензильных и некоторых других производных переходных металлов.

При кислотном и щелочном разложении π -пентенил- и π -циклогексенилникельхлоридов, так же как и в случае π -кротилникельгалогенидов, основным продуктом превращения является олефин. Его выход составлял $\sim 70-80\%$ от теории. Следует отметить, что π -пентенил- и π -циклогексенилникельхлориды достаточно устойчивы при контакте с обескислороженными водными растворами кислоты и щелочи. Полное разложение при компатной температуре наблюдается лишь через несколько суток.

Известно, что π -алкенилникельгалогениды являются эффективными катализаторами полимеризации бутадиена только в присутствии электроноакцепторных соединений (¹). Поэтому представляется важным изучение процесса взаимодействия компонентов в этих системах.

Реакцию комплексообразования л-пентенил- и л-циклогексенилникельхлорида с электроноакценторами проводили до полного выпадения осадка при различных температурах. Жидкую фазу отделяли от осадка фильтрованием или переконденсацией в вакууме и анализировали хроматографически.

При использовании в качестве электроноакцепторов хлораля и трихлорацетатов цинка и никеля в жидкой фазе, по аналогии с разложением л-кротилникельхлорида (табл. 2, оп. №№ 1, 2), найдены только продукты рекомбинации алкенильных групп — дипентенил и дициклогексенил (оп.

Продукты, образующиеся при взаимодействии п-алкенилникельхлоридов с электроноакцепторами. Время взаимодействия 60 мин. (в случае хлораля 8 мин.)

п.п.	л-Аллильное со-	Электроноак- цептор, А	i],		T-pa, °C	Продукты превращения алке- нильных групп, мол. %			
N.W.	единение никеля, RNiCi		[A]/[Ni], Moff.	Растворитель		$\mathrm{R}_{-\mathrm{H}}$		R-R	
1	π-Кротилникель-	Хлорэнил	1:2	Ксилол	20	0		Дикро-	81
2	хлорид *	(CCl ₃ COO) ₂ Ni	1:2		20	0		тил	53
	л-Циклогексенил- никельхлориц	(CCl ₈ COO) ₂ Ni	1:1	Толуол	20	0		Дицикло- гексенил	27,5
4	»	(CCI ₃ COO) ₂ Ni	1:1	Толуол + цикло- генсадиен (1 ЦГД на 1 Ni)	20	Осталось	32,5	i ortocizni,	35,5
5	π-Пентенилни-	Хлораль	1:1		10	0		Дипенте- нил	27,5
6	кельхлорид »	»	1:1	*	30	0		HHAL	$\frac{30}{22}$
7	»	(CCl₃COO)₂Zn	2:1	»	20	0	4- 10		22
8	»	Хлоранил	1:1	»	10	Транс-пен-	10-12	1	5 - 6
9	»	»	1:1	»	20	тадиен	13		~1
10	»	»	1:1	»	50		19 - 24		34
11	»	Фторанил	1:1	»	20	[13	l	4

Примечание. Данные оп. № 1 и 2 по (2).

№№ 3—7). При взаимодействии π-пентенилникельхлорида с хинонами основным продуктом превращения пентенильных групп является пентадиен-1,3, в то время как выход дипентенила существенно уменьшается (оп. $N_2N_2 8-11$).

Из приведенных данных следует, что под влиянием электроноакцепторов л-пентенилникельхлорид претерпевает распад в двух направлениях:

Образование диена может быть связано с реакцией спонтанного распада комплекса, происходящей с отщеплением HNiCl·A, или с реакцией дегидрирования пентенильной группы хиноном. Прогрев при 100° осадка приводит к выделению молекулярного водорода, обнаруженного хроматографически, что как будто указывает на протекание реакции спонтанного разложения.

Образованию диена (направление 1), по-видимому, благоприятствует существование л-алкенилникельгалогенида в мономерной форме.

Под влиянием систем, приведенных в табл. 2, образующиеся диены лег-ко полимеризуются при температурах 20-30°. Поэтому приводимые данные о выходе диена могут быть значительно заниженными. Специально проведенными опытами было показано, что дипентенил, введенный в систему π-C₅H₉NiCl — хлоранил, не претерпевает изменений.

Как видно из табл. 2, с ростом температуры при взаимодействии π-пентенилникельхлорида с хлоранилом наблюдается увеличение количества выделяющегося пентадиена.

Институт нефтехимического синтеза им. А. В. Топчиева Академии паук СССР Москва

Поступило 18 VII 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. А. Долгоплоск, К. Л. Маковецкий и др., Полимеризация диенов под влиянием л-аллильных комплексов, «Наука», 1968.

² А. Г. Азизов, Т. К. Выдрина и др., ДАН, 195, 349 (1970).