УДК 549.07+549.514.5

МИНЕРАЛОГИЯ

Б. М. МИЦЮК, Л. И. ГОРОГОЦКАЯ, А. И. РАСТРЕНЕНКО

ПРОМЕЖУТОЧНЫЕ ФОРМЫ КРЕМНЕЗЕМА, ПОЛУЧЕННЫЕ ПРИ ГИДРОТЕРМАЛЬНОМ СИНТЕЗЕ КВАРЦА

(Представлено академиком Н. В. Беловым 19 XII 1972)

В ряде исследований показано, что в процессе превращения аморфного кремнезема в кварц в гидротермальных условиях могут образовываться промежуточные фазы, являющие собой различные модификации кремнезема. Так, Кэрр и Файф (¹) наблюдали образование кристобалита, а также китита, синтезированного впервые Китом в 1954 г. (²). В других работах (³, ⁴) обнаружен только кристобалит. В то же время, Хейдеман (⁵) паряду с кристобалитом была получена новая форма, названная ею кремнезем-Х. Белов (⁶) предположил, что в природных условиях образование кварца может протекать через окенит.

Несколько разновидностей кремнезема было получено в настоящей работе при гидротермальной обработке высушенных гелей поликремневой кислоты (ПКК). Опыты проводились в установке высоких давлений (7) и в автоклавах с тефлоновой футеровкой при температурах $150-250^\circ$ и давлениях 0.5-4.0 кбар. В качестве реакционной среды применялись 0.5-2.0% растворы КОН, содержащие в ряде случаев примеси солей различной природы: NaCl, NaF, NaNO₃, Na₂CO₃, Na₂SO₄, KCl, RbCl и др.

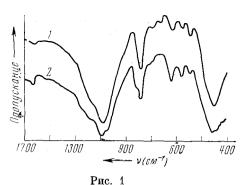
В результате выполненной работы было показано, что первой стадией превращения гелей ПКК в гидротермальных условиях является формирование опаловидных форм кремнезема, которые затем кристаллизуются с образованием ряда промежуточных фаз. При этом получены две формы кремнезема ($SiO_2 - X_1$ и $SiO_2 - X_2$), являющиеся разновидностями кремнезема-X, синтезированного впервые Хейдеман (5), а также новая форма, условно названная нами $SiO_2 - Y$. Формы $SiO_2 - X_1$ и $SiO_2 - X_2$ образуются как в чистой щелочной сре-

Формы SiO₂ — X₁ и SiO₂ — X₂ образуются как в чистой щелочной среде, так и в присутствии примесей солей в изученном интервале температур и давлений, причем первая превращается во вторую при увеличении продолжительности гидротермальной обработки. SiO₂ — Y получается в щелочных растворах хлористого натрия при температуре ниже 180°, выше которой появляется SiO₂ — X₂. Однако в щелочной среде гидроокиси натрия SiO₂ — Y образуется также и при 180°, что свидетельствует о том, что в растворах NaOH эта форма является более характерной, чем SiO₂ — X₂.

Как видно из табл. 1, типичные рентгенограммы полученных форм кремнезема отличаются от рентгенограммы $SiO_2 - X$ (5) по интенсивности и положению отдельных дифракционных линий. Рентгенограмма $SiO_2 - X_1$ характеризуется малым числом слабых и довольно диффузных линий и отсутствием некоторых отражений $SiO_2 - X$. Образцы разновидности $SiO_2 - X_2$ дают рентгенограммы, близкие к $SiO_2 - X$, но отличающиеся более низким фоном и большим числом линий. Для этих рентгенограмм типичными являются интенсивные линии с межплоскостными расстояниями 18,5-20,0; 9,3-9,7; 3,40-3,48 и 1,84-1,85 Å. Колебания указанных расстояний связаны с условиями получения образцов — природой среды, температурой и давлением.

Рентгенограммы SiO_2 — Y отличаются от рентгенограмм известных модификаций SiO_2 . Дебаеграммы и дифрактограммы, как и для формы

Межплоскостные расстояния и интенсивность дифракционных линий синтезированных форм кремнезема


SiO ₂ - X (⁵)		SiO ₂ — X ₁		SiO ₂ — X ₂		SiO ₂ — Y	
d, Å	I	d, Å	I	d, Å	I	d, Å	I
18,02 8,93 7,32 6,30 5,11 4,37 	2 1,2 1,5 1,1 0,6 0,6 10 1 1	6,30 5,08 4,27 — 3,74 3,37 — 2,99 — 1,85 — 1,64 — 1,34 — 1,21	3 3 10 — 2 2 — 1 — 2 — 2 — 2 — 4 — 3 — 4 — 3 — 4	20,0 9,8 7,26 6,26 5,01 4,24 — 3,79 3,45 3,477 2,975 2,873 2,536 2,345 2,266 1,988 1,778 1,546 — 1,407 1,38 — 1,21 1,175	5 3 2 2 5 4 - 3 40 - 4 2 2 1 1 1 1 1 - 2 3 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1	16,0 7,73 5,69 5,15 4,46 4,02 3,83 3,62 3,44 3,30 3,15 	8 -4 1 5 4 1 1 10 4 10 -3 3 3 3 6 6 2 1 2 2 2 2 1 1 1 1

SiO₂ — X₂, характеризуются четкими интенсивными отражениями в области малых углов. Наиболее сильная линия соответствует межплоскостному расстоянию 16.0 Å.

Если сопоставить и.-к. спектры, снятые на спектрометре UR-20 (Цейсс, Мена), разновидностей $SiO_2 - X_2$ и $SiO_2 - Y$ (рис. 1), то легко можно видеть, что общим у них является наличие триплета и положение его полос 545, 575 и 612-618 см⁻¹, относящихся к внутренним колебаниям атомов в тетраэдрах SiO_4 , однако соотношение интенсивностей полос различное. Для $SiO_2 - X_2$ характерна наибольшая интенсивность полос при 545 см⁻¹, в то время как для $SiO_2 - Y$ она самая слабая, а более интенсивными являются две полосы 575 и 618 см⁻¹ или одна при 618 см⁻¹, в зависимости от образца. При этом наблюдается смещение ее в более высокочастотную область спектра (от 612 до 618 см⁻¹). Кроме того, в спектре $SiO_2 - Y$ имеется расщепление полосы в низкочастотной области на две при 445 и 460 см⁻¹, появляется широкое плечо 800-820 см⁻¹ и новые полосы около 1080, 1170 и 1230 см⁻¹.

Здесь следует отметить, что полученные разновидности $SiO_2 - X_1$, $SiO_2 - X_2$ и $SiO_2 - Y$ обладают повышенной ионообменной способностью (особенно в щелочной области pH), более высокой, чем опаловидные кремнеземы. При этом водородные и ионзамещенные формы кремнезема практически не различаются по своим рентгенограммам и и.-к, спектрам.

Электронномикроскопические исследования фаз $SiO_2 - X_2$ и $SiO_2 - Y$ показывают, что они имеют глобулярное строение. Размер глобул порядка нескольких микрон. Они обладают хорошо развитой поверхностью и пред-

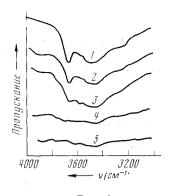
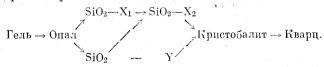


Рис. 2


Рис. 1. И.-к. спектры форм кремнезема $SiO_2 - X_2$ (1) и $SiO_2 - Y$ (2) Рис. 2. И.-к. спектры образца SiO₂ — X₂ исходного (1) и прогретого при 400° (2), 500 (3), 600 (4) μ 700° (5)

ставляют собой макрообразования, построенные из пластинчатых или волокнистых кристаллов размером от десятых долей до $1{-}2\,\mu.$ О рыхлом строении глобулярных частичек свидетельствуют также высокие значения величин их удельной поверхности, определенные по низкотемпературной адсорбции азота. Для некоторых образцов получены значения порядка $30 \text{ m}^2/\Gamma$.

Плотность фазы ${
m SiO_2}$ — ${
m X_2}$ составляет 2,38—2,52 г/см $^{\rm s}$, что гораздо выше плотности исходного геля (2,20 г/см³), опаловидного кремнезема (2,24-2,28 г/см3) и приближается к значениям, характерным для кварца (2.65 r/cm^3) .

Как показывают данные и.-к. спектроскопии, я.м.р. и термогравиметрического исследований, фазы $SiO_2 - X_2$ и $SiO_2 - Y$ содержат значительное количество структурной воды. На и.-к. спектрах $SiO_2 - X_2$ (рис. 2) наблюдается четкая полоса около 3660 см⁻¹ (для SiO₂ — Y она проявляется при 3670 см⁻¹), которая относится к колебаниям структурных ОН-групп. Полоса около 3450 см-1 отвечает физически адсорбированной воде. Однако при повышении температуры до 600-700° полоса 3660 см⁻¹ размывается, а затем полностью исчезает. Одновременно при этом наблюдаются структурные изменения фаз. Так, при нагреве образцов $SiO_2 - X_2$ и $SiO_2 - Y$ до 700° на рентгенограммах появляются линии низкотемпературного кристобалита и кварца. При 800° помимо линий кристобалита возникают отражения, характерные для низкотемпературного тридимита. При 1000° наступает полное превращение вещества в тридимит.

Следует отметить, что в процессе дальнейшей гидротермальной обработки фазы $SiO_2 - X_1$, $SiO_2 - X_2$ и $SiO_2 - Y$ превращаются сначала в низкотемпературный кристобалит, а затем в кварц. Эти данные позволяют предложить следующую схему превращения гелей ПКК в гидротермальных условиях, рассмотренных в настоящем сообщении:

Институт геохимии и физики минералов Академии наук УССР Киев

Поступило 12 XII 1972

цитированная литература

¹ R. M. Carr, W. S. Fyfe, Am. Mineral, 43, № 9—40 (1958). ² P. P. Keat, Science, 120, № 3143 (1954). ³ A. S. Campbell, W. S. Fyfe, Am. Mineral., 45, № 3—4 (1960). ⁴ S. Mizutani, J. Earth. Sci., Nagoya Univ., 14, № 1 (1966). ⁵ A. Heydemann, Beitr. Mineral. u. Petrogr., 10 (1964). ⁶ H. B. Белов, Зап. Всесоюзн. минерал. общ., 90, № 2 (1964). ⁷ Г. Г. Долгушин, Ю. И. Исаев, Тр. минералогических институтов СССР, в. 104 (1969). 928