УДК 518:517

MATEMATUKA

И. Н. МОЛЧАНОВ, М. Ф. ЯКОВЛЕВ

ОБ ОДНОМ КЛАССЕ ИТЕРАЦИОННЫХ ПРОЦЕССОВ РЕШЕНИЯ НЕСОВМЕСТНЫХ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

(Представлено академиком А. А. Дородницыным 21 VI 1972)

1. При решении реальных задач встречаются системы линейных алгебраических уравнений, которые из-за погрешности задания коэффициентов уравнения и правых частей становятся неразрешимыми и матрицы которых или вырождены, или в пределах точности их задания становятся вырожденными. В (¹) предлагался метод построения приближения к нормальному решению таких систем уравнений. В настоящей работе для решения таких систем линейных алгебраических уравнений с симметричными матрицами предлагается класс итерационных процессов, позволяющий получить обобщенное решение без трансформации Гаусса (²) и, следовательно, без ухудшения свойств матрицы исходной системы уравнений. Построенные итерационные процессы являются распространением теории регуляризации итерационных схем А. А. Самарского (³) на уравнения с вырожденными операторами и правыми частями, пе удовлетворяющими условиям разрешимости.

2. Пусть дана система п линейных алгебраических уравнений

$$Ay = t, (1)$$

где $A = A^*$, $(Ay, y) \ge 0$, det (A) = 0.

Пусть собственные значения матрицы $A=0=\lambda_1=\lambda_2=\ldots=\lambda_m<<\lambda_{m+1}<\ldots<\lambda_n$ и соответствующие им собственные векторы $\{v_i\}$, $j=1,\ 2,\ldots,n$. Обозначим подпространство, порождаемое собственными векторами $v_1,\ v_2,\ldots,v_m$, через $S_0{}^A$, а подпространство, порождаемое векторами v_{m+1},\ldots,v_n — через $S_1{}^A$.

Тогда необходимые и достаточные условия разрешимости системы (1)

можно записать в виде

$$(f, v_j) = 0$$
 gas $j = 1, 2, \dots, m$. (2)

Для несовместной системы справедливо представление

$$f = \bar{f} + \tilde{f},\tag{3}$$

где

$$\tilde{f} \in S_1^A$$
, $\tilde{f} \in S_0^A$, $(\tilde{f}, \tilde{f}) = 0$.

Обобщенным решением системы (1) называется любое решение системы

$$A^*Au = A^*/ = q \quad (A^2u = q), \tag{4}$$

т. е. решение совместной системы

$$Au = \bar{f}. \tag{5}$$

Решения системы (5) представимы в виде

$$u = \overline{u} + \widetilde{u},\tag{6}$$

$$ar{u} \in S_1^A, \quad ilde{u} \in S_0^A.$$

3. Для получения обобщенного решения системы (1) можно применить итерационный процесс

$$B \frac{y^{(k+1)} - y^{(k)}}{\tau} + Ay^{(k)} = f, \quad y^{(0)} = y_0,$$

$$k = 0, 1, 2, \dots, \quad B = B^*, \quad (By, y) > 0,$$
(7)

где k — помер итерации, τ — параметр.

Для процесса (7) справедливы следующие теоремы.

Теорема 1. Итерационный процесс (7) при

$$\tau = 2/(\gamma_1 + \gamma_2) \tag{8}$$

в случае совместной системы (1) $(f = \overline{f})$ сходится как геометрическая прогрессия со знаменателем

$$\rho = \frac{\gamma_2 - \gamma_1}{\gamma_2 + \gamma_1} \tag{9}$$

к тому решению и, для которого $B^{^{(k)}}$ и имеет одинаковую с $B^{^{(k)}}$ у, проекцию на подпространство $S_0{^c}$. В случае несовместной системы (1) получается последовательность векторов $y^{(k)}$, $k=0,1,2,\ldots$, для которых справедливо соотношение

$$\lim_{k \to \infty} \| r^{(k+1)} - r^{(k)} \| = 0. \tag{10}$$

В теореме $\gamma_1 \leqslant \mu_{m+1}$, $\gamma_2 \geqslant \mu_n$, μ_{m+1} и μ_n — наименьшее отличное от нуля и максимальное собственные значения матрицы

$$C = B^{-\frac{1}{2}}AB^{-\frac{1}{2}}, \quad r^{(h)} = Ay^{(h)} - f, \quad ||r|| = \sqrt{(r, r)}.$$

Доказательство. Итерационный процесс (7) можно записать выде

$$\frac{x^{(k+1)} - x^{(k)}}{\tau} - Cx^{(k)} = g,$$

$$k = 0, 1, 2, \dots; \quad x^{(0)} = B^{y_0}y_0,$$

где $x = B^{\eta_2} y$, $g = B^{-\eta_2} f = \bar{g} + \tilde{g}$, $\bar{g} \in S_1^{C}$, $\tilde{g} \in S_0^{C}$.

Если обозначить через x^* нормальное решение (1) системы

$$Cx = \bar{g},\tag{11}$$

то, пользуясь разложением погрешности

$$z^{(k)} = x^{(k)} - x^* = \overline{z}^{(k)} + \widetilde{z}^{(k)} = \overline{z}^{(k)} + \widetilde{x}^{(k)}, \quad x^* \in S_1^C,$$

по собственным векторам матрицы C, получим соотношения

$$\|\bar{z}^{(h)}\| \le \rho \|\bar{z}^{(h-1)}\| \le \rho^h \|\bar{z}^{(0)}\|,$$
 (12)

$$\tilde{z}^{(k)} = \tilde{z}^{(0)} + k\tau \tilde{g}. \tag{13}$$

Если система уравнений совместна ($\tilde{g} \equiv 0$), то $\tilde{z}^{(k)} = \tilde{x}^{(k)} = \tilde{x}^{(0)}$, и, таким образом, проекция вектора $B^{\prime z}y_0$ не изменяется в итерационном пронессе.

Для песовместиой системы $\bar{x}^{\scriptscriptstyle (h)}=x^*+\bar{z}^{\scriptscriptstyle (h)}$, $\tilde{x}^{\scriptscriptstyle (h)}=\tilde{x}^{\scriptscriptstyle (0)}+k$ т \tilde{g} и тогда

$$||B^{-\frac{1}{2}}r^{(k+1)} - B^{-\frac{1}{2}}r^{(k)}|| \leq \mu_n (1+\rho) \rho^k ||\overline{z}^{(0)}||,$$

откуда следует (10).

Теорема 2. Последовательность векторов

$$u^{(k)} = y^{(k)} - k(y^{(k+1)} - y^{(k)})$$
(14)

сходится к тому обобщенному решению и системы (1), для которого $B^{h_2}u$ имеет одинаковую с $B^{h_2}y_0$ проекцию на подпространство $S_0{}^c$, τ . e.

$$\lim_{k \to \infty} ||u^{(k)} - u|| = 0. \tag{15}$$

Доказательство. Так как $B^{\prime\prime}u=x^*+\widetilde{x}^{\scriptscriptstyle(0)}$, то

$$u^{(k)} - u = B^{-1/2} [\bar{z}^{(k)} - k(\bar{z}^{(k+1)} - \bar{z}^{(k)})],$$

а с учетом (12)

$$||u^{(k)} - u|| \le ||B^{-1/2}|| (1 + k(1 + \rho)) \rho^k ||\bar{z}^{(0)}||,$$

откуда следует (15).

Следствие. Если выполняется неравенство

$$||r^{(k)}-r^{(k+1)}|| \leqslant \varepsilon,$$

то справедливы оценки

$$\|\,u^{(k)}-u\,\|\leqslant\frac{(1+k\tau\mu_n)\,\varepsilon}{\tau\mu_{m+1}^2\nu}=\frac{(1+k\tau\mu_n)\,\varepsilon}{\mu_{m+1}\,(1-\varrho)\nu}\;,$$

 $r\partial e \ v$ — минимальное собственное значение оператора B.

- 4. Замечания. 1) Если операторы B и A имеют одинаковую систему собственных векторов, то справедливы утверждения:
- а) процесс (7) в случае совместной системы (1) сходится как геометрическая прогрессия со знаменателем ρ к решению, имеющему одинаковую с начальным приближением проекцию на подпространство $S_0^{\mathbf{A}}$;
- б) в случае несовместной системы (1) последовательность $\{u^{(h)}\}$ сходится к обобщенному решению, имеющему одинаковую с начальным приближением проекцию на S_0^A ;
- в) при выборе пулевого начального приближения в обоих случаях получается нормальное в смысле А. Н. Тихонова (1) решение.
- 2) Вместо оценки γ_1 можно в итерационном процессе использовать любую величину γ , $0 < \gamma \leqslant \mu_n$. При $\gamma = \gamma_2$ процесс (7) превращается в следующий:

$$B(y^{(k+1)}-y^{(k)})+\frac{1}{\gamma_2}Ay^{(k)}=\frac{1}{\gamma_2}f.$$

Институт кибернетики Академии наук УССР Киев Поступило 30 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Н. Тихонов, Журн. вычислит. матем. и матем. физ., 5, № 4, 718 (1965). ² Д. К. Фаддеев, В. Н. Фаддеева, Вычислительные методы линейной алгебры, М., 1960. ³ А. А. Самарский, Введение в теорию разностных схем, М., 1971.