УПК 517.537

МАТЕМАТИКА

Академик АН АзербССР И. И. ИБРАГИМОВ, И. С. АРШОН

О ПОЛНОТЕ СИСТЕМЫ $\{x^{\lambda_n}\}$ НА КРИВОЙ

В настоящей заметке чрезвычайно простыми средствами булет получено обобщение известной теоремы Мюнца о полноте системы $\{x^{\lambda_n}\}$ с отрезка действительной оси на произвольный спрямляемый контур комплексной плоскости *.

Пусть Γ — контур в комплексной плоскости x, $\mu(x)$ — лебегова мера на Γ и $\int d\mu (x) = \text{const} > 0$.

Обозначим через $L_p(\Gamma; \mu)$, p > 1, линейное нормированное пространство комплекснозначных функций h(x), заданных на Γ , с нормой

$$\|\boldsymbol{h}\|_{L_{\boldsymbol{p}}(\Gamma;\boldsymbol{\mu})} = \left(\int_{\Gamma} d\mu \left(\boldsymbol{x}\right)\right)^{-1} \left(\int_{\Gamma} |\boldsymbol{h}\left(\boldsymbol{x}\right)|^{p} d\mu \left(\boldsymbol{x}\right)\right)^{1/p} \,.$$

Теорема. Пусть контур Γ целиком лежит в угле $|\arg x| \leq \pi \sigma$, $0 \le \sigma \le 1$, а последовательность положительных чисел $\{\lambda_n\}$ удовлетворяет исловию

$$\int_{0}^{+\infty} \frac{n(u) - \sigma u}{u^2} du = + \infty,$$

где n(u) — число точек λ_n в интервале (0,u). Тогда система функций $\{x^{\lambda_n}=|x|^{\lambda_n}\exp{(i\lambda_n\arg{x})}\}$ полна в пространcree $L_p(\Gamma, \mu), p > 1$.

Доказательство. Каждый линейный непрерывный функционал $\Phi[h]$ в пространстве $L_p(\Gamma; \mu)$ имеет вид

$$\Phi [h] = \Phi_{g} [h] = \int_{\Gamma} h(x) g(x) d\mu(x),$$

где $g(x) \in L_q(\Gamma; \mu)$, 1/p + 1/q = 1. Согласно известной теореме Банаха, для доказательства нашего утверждения достаточно установить, что любой линейный непрерывный функционал в $L_p(\Gamma; \mu)$, обращающийся в нуль на системе $\{x^{\lambda_n}\}$, является тождественным нулем. Зафиксируем $g(x) \subseteq L_g(\Gamma; \mu)$ и обозначим при $\operatorname{Re} z \geqslant 0$

$$\varphi(z) = \int_{\Gamma} x^z g(x) d\mu(x).$$

Имеем

$$\varphi(\lambda_n) = \int_{\Gamma} x^{\lambda_n} g(x) d\mu(x) = \Phi_g[x^{\lambda_n}] = 0, \quad n = 1, 2, \dots$$

Требуется показать, что g(x) = 0 почти всюду по мере $\mu(x)$, а для этого достаточно установить, что $\varphi(z) \equiv 0$.

^{*} Теорема Мюнца о полиоте системы $\{x^{\lambda_n}\}$ в пространстве C(0,1) не является следствием теоремы Т. Карлемана о полноте системы функции $\{z^{i}n\}$ в некотором угле (см. (1), стр. 386).

В самом деле, из того, что $\varphi(z) \equiv 0$, следует

$$\varphi(n) = \int_{\Gamma} x^n g(x) d\mu(x) = 0, \quad n = 0, 1, 2, \dots$$

Отсюда и из того, что система положительных степеней $\{x^n\}$ полна в пространстве $L_p(\Gamma; \mu)$, вытекает, что g(x) = 0 почти всюду на Γ по мере $\mu(x)$.

Легко видеть, что $\varphi(z)$ регуляриа в полуплоскости Re z > 0 и непрерывна в замкцутой полуплоскости $\text{Re } z \ge 0$. Далее, согласно неравенству Гёльдера,

$$|\varphi(z)| \leqslant \left\{ \int_{\Gamma} |x^{z}|^{p} d\mu(x) \right\}^{1/p} \left\{ \int_{\Gamma} |g(x)|^{q} d\mu(x) \right\}^{1/q},$$

откуда, ввиду условия $g(x) \subseteq L_q(\Gamma; \mu)$, имеем

$$\ln |\varphi(z)| \leq \frac{1}{p} \ln \int_{\mathbb{R}} |x^z|^p d\mu(x) + C,$$

. где $C=C_{\mathfrak{g}}$ зависит только от функции g(x) и не зависит от z.

$$\frac{1}{p}\ln\sum_{\Gamma}|x^z|^p\,d\mu(x) \leqslant \frac{1}{p}\ln\left\{\max_{x\in\Gamma}|x^z|^p\sum_{\Gamma}d\mu(x)\right\} = \ln\max_{x\in\Gamma}|x^z| + C_1,$$

нричем
$$C_1$$
 не зависит от z . В силу условия $\max_{x\in\Gamma}|\arg x| \le \pi\sigma$, получаем
$$\lim_{\mathrm{Re}z\geqslant 0}|\varphi(z)| \le \max_{x\in\Gamma}\{(\mathrm{Re}\,z)\ln|x|-(\mathrm{Im}\,z)\arg x\} + C_2 \le$$

$$\le C_2 + M\,\mathrm{Re}\,z + \pi z\,|\,\mathrm{Im}\,z\,|, \quad C_2 = C + C_1, \quad M = \max_{x\in\Gamma}\{\ln|x|\}.$$

Отобразим полуплоскость $\mathrm{Re}\,z>0$ в единичный круг |w|<1 с помощью функции $w=\frac{z-1}{z+1}$, $z=\frac{1+w}{1-w}$. Тогда функция $f(w)=\phi\left(\frac{1+w}{1-w}\right)$ будет регулярна в круге |w| < 1, причем точки $\mu_n = (\lambda_n - 1) / (\lambda_n + 1)$ $n=1,2,\ldots$, станут нулями функции f(w).

Обозначим через $\nu(\rho)$ число точек μ_n в круге $|w|<\rho$. Пусть, далее

$$N\left(\rho\right) = \sum_{\mid\mu_{n}\mid<\rho} \ln\frac{\rho}{\mid\mu_{n}\mid}, \quad S\left(\rho\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \ln\left|f\left(\rho e^{i\theta}\right)\right| d\theta, \quad 0 < \rho < 1.$$

Если число неположительных точек μ_n бесконечно, т. е. бесконечно число точек λ_n на отрезке $0 \le \lambda_n \le 1$, то по теореме единственности для аналитических функций $\varphi(z) \equiv 0$ и паше утверждение доказано. Исключив этот тривиальный случай, будем иметь

$$N\left(
ho
ight) = \sum_{\delta < \mu_{n} <
ho} \ln rac{
ho}{\mu_{n}} + O\left(1
ight), \quad
ho
ightarrow 1 - 0, \quad \delta > 0,$$

или, что то же самое.

$$N(\rho) = \int_{\delta}^{\rho} \ln \frac{\rho}{t} d\nu(t) + O(1) = \int_{\delta}^{\rho} \frac{v(t)}{t} dt + O(1), \quad \rho \to 1 - 0.$$

Теперь заметим, что, ввиду положительности всех чисел λ_n , равносильны следующие неравенства:

$$\mu_n = \frac{\lambda_n - 1}{\lambda_n + 1} < \rho, \quad \lambda_n < \frac{1 + \rho}{1 - \rho}, \quad 0 < \rho < 1.$$

Отсюда вытекает, что $v(\rho)=n \ \left(\frac{1+\rho}{1-\rho}\right)$. Значит,

$$N\left(
ho
ight) = \int\limits_{\delta}^{
ho} n \left(rac{1+t}{1-t}
ight) rac{dt}{t} + O\left(1
ight), \quad
ho
ightarrow 1 - 0,$$

или, что то же самое,

$$N(\rho) = 2 \int_{1+\Delta}^{(1+\rho)/(1-\rho)} \frac{n(u) du}{u^2 - 1} + O(1), \quad \rho \to 1 - 0, \, \Delta > 0.$$
 (1)

Теперь, пользуясь полученным выше перавенством для $\ln |\varphi(z)|$, займемся оценкой сверху величины $S(\rho)$. Имеем

$$S(\rho) \leqslant \frac{1}{2\pi} \int_{0}^{2\pi} \left\{ C_2 + M \operatorname{Re} \frac{1 + \rho e^{i\theta}}{1 - \rho e^{i\theta}} + \pi \sigma \left| \operatorname{Im} \frac{1 + \rho e^{i\theta}}{1 - \rho e^{i\theta}} \right| \right\} d\theta =$$

$$= C_2 + M + \sigma \int_{0}^{\pi} \frac{2\rho \sin \varphi \, d\varphi}{1 - 2\rho \cos \varphi + \rho^2} = C_3 + \sigma \ln (1 - 2\rho \cos \varphi + \rho^2) \Big|_{0}^{\pi} =$$

$$= C_3 + 2\sigma \ln \frac{1 + \rho}{1 - \rho} + O(1), \quad \rho \to 1 - 0.$$

Итак,

$$S(\rho) \le 25 \ln \frac{1+\rho}{1-\rho} + O(1), \quad \rho \to 1-0.$$

Последнее перавенство представим в виде

$$S(\rho) \leqslant 2 \int_{1+\Delta}^{(1+\rho)/(1-\rho)} \frac{\operatorname{su} du}{u^2 - 1} + O(1), \quad \rho \to 1 - 0, \tag{2}$$

поскольку

$$\int_{1}^{(1+\rho)} \frac{2u \, du}{u^2 - 1} = 2 \ln \frac{1 + \rho}{1 - \rho} + O(1), \quad \rho \to 1 - 0.$$

Обратимся, наконец, к известной формуле Иепсена, согласно которой функция f(w), регулярная в круге |w| < 1 и удовлетворяющая условию

$$\lim_{\rho \to 1-0} \left[S(\rho) - N(\rho) \right] = -\infty,$$

является тождественным нулем (см. (1), стр. 53). Согласно оценкам (1) и (2), это условие в нашем случае имеет вид

$$\lim_{
ho o 1-0} \int\limits_{1+\Delta}^{(1+
ho)(1-
ho)} rac{n \ (u)- extstyle u}{u^2-1} \, du = + \infty \quad$$
или $\int\limits_{1}^{\infty} rac{n \ (u)- extstyle u}{u^2} \, du = + \infty$,

что и требовалось доказать.

Следствие 1. Пусть контур Γ удовлетворяет условиям теоремы, а последовательность $\{\lambda_n\}$ такова, что

a)
$$\lambda_{n+1} - \lambda_n > \text{const} > 0$$
, $n = 1, 2, ...$;

$$\text{ 6) } \lim_{t \to +\infty} \left\{ \sum_{\lambda_k < t} \frac{1}{\lambda_k} - \sin t \right\} = + \infty.$$

Тогда система $\{x^{\lambda_n}\}$ полна в пространстве $L_p(\Gamma; \mu)$. Доказательство. Условие б) можно записать в виде

$$\lim_{t\to+\infty}\int_{-u}^{t}\frac{d\left\{ n\left(u\right) -\sigma u\right\} }{u}=+\infty,$$

или после интегрирования по частям

$$\lim_{t\to+\infty}\left\{\int_{-u^2}^{t}\frac{n(u)-5u}{u^2}du+\frac{n(t)}{t}\right\}=+\infty.$$

Но согласно условию а) имеем $\lambda_n \ge dn$, d > 0, $n(u) \le \frac{1}{d} u$, так что, согласно нашей теореме, получаем требуемое.

Замечание. При $\sigma=0$ получаем (в несколько ослабленном виде вследствие наличия дополнительного ограничения а)) классическую теорему Мюнца о полноте системы $\{x^{\lambda_n}\}$ в пространстве C(0, 1).

Следствие 2. Пусть положительные числа λ_n удовлетворяют усло-

виям:

a)
$$\lambda_{n+1} - \lambda_n \geqslant \text{const} > 0, n = 1, 2, \ldots;$$

6)
$$\lim_{n\to\infty} \left\{ \sum_{k=1}^n \frac{1}{\lambda_k} - \ln \lambda_{n+1} \right\} = + \infty.$$

Tогда система функций $\{e^{i\lambda_n t}\}$ полна в пространстве $L_p(-\pi, \pi)$.

Для доказательства достаточно положить в предыдущем следствии $\sigma=1$, взять в качестве контура Γ окружность |x|=1, а в качестве меры $\mu(x)$ — величину |x|. Сделав затем замену $x=e^{it}$, $-\pi \le t \le \pi$, получим требуемое.

Замечание. Полнота системы $\{e^{i\lambda_n t}\}$ в пространстве $L_p(-\pi, \pi)$, $p \ge 1$, установлена Н. Левинсоном (см. (¹), стр. 433) при условии

$$\overline{\lim_{n\to\infty}}\Big\{\sum_{k=1}^n\frac{1}{\lambda_k}-\pi\lambda_{n+1}+\frac{\ln\lambda_{n+1}}{p}\Big\}>-\infty.$$

Институт математики и механики Академии наук АзербССР Баку Поступило 10 XI 1972

Московский институт электронного машиностроения

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ И.И.Ибрагимов, Методы интерполяции функций и пекоторые их применения, «Наука», 1971, стр. 1.