УДК 549.633

МИНЕРАЛОГИЯ

ю. Л. Капустин

О ПЕРВОЙ НАХОДКЕ АМИНОВИТА В СССР И СООТНОШЕНИЯХ МИНЕРАЛОВ В ГРУППЕ ЛЕЙКОФАНА — АМИНОВИТА

(Представлено академиком Д. С. Коржинским 17 VIII 1971)

Аминовит — редчайший силикат Ве и Са — впервые встречен в месторождении Лонгбан (Швеция) (1). Затем сходный минерал описан в КНР под названием «гугиаит» (2). Нами аминовит обнаружен в Дугдинском массиве и Баянкольском дайковом поле (Тува).

Дугдинский массив (Северо-Восточная Тува) сложен гастингситовыми нефелиновыми сиенитами. В Баянкольском поле (Юго-Восточная Тува, к востоку от одноименного массива) щелочные дайки представлены тингуа-итами, нефелинитами, нефелиновыми и сиенит-порфирами. Интрузивные щелочные породы здесь относятся к среднепалеозойской щелочной формации и прорывают рифейскую сланцево-карбонатную толщу. Акцессорный аминовит встречен в обоих случаях в флюоритовых жилах. Поблизости от Дугдинского массива они залегают на контакте мраморов с роговообманковыми гранитами. Вмещающие граниты альбитизированы, мраморы перекристаллизованы, местами — скарнированы. По гранитам развит везувиан-гранат-диопсидовый скарн, а по мраморам — везувиан-волластонитовый. Жилы на 70—90% сложены темно-фиолетовым флюоритом, содержат везувиан, анальцим, натролит, канкринит, пренит, галенит.

В Баянкольском поле флюоритовые жилы приурочены к контактам даек нефелиновых сиенитов и сложены флюоритом с примесью кальцита, канкринита, пирита, анальцима и аминовита.

Аминовит образует вкраиленность и сплошные зернистые скопления в массе флюорита. Агрегаты аминовита представляют собой сростки пластинчатых кристаллов, сноновидные, веерообразные, радиально-лучистые или отдельные пластинчатые кристаллы, резко уплощенные по (001), с узкими гранями (110) и (111) (рис. 1). Большая часть пластин полисинтетически сдвойникована параллельно (001). Аминовит светло-желтоватого цвета; в тонких пластинках чист и прозрачен, с редкими тончайшими вростками флюорита и плохо выраженной спайностью по тетрагональной призме и хорошей отдельностью по (001), вероятно обусловленной постоянным двойникованием по ней. Для тувинского аминовита установлен сильный пьезоэффект; свойства его близки к свойствам минерала из Лонгбана (табл. 1). Дебаеграмма аминовита из Тувы аналогична дебаеграммам мелинофана, гугнаита и лейкофана (табл. 2), но отлична от таковой для шведского аминовита. Для последней характерно изменение межплоскостных расстояний, их интенсивностей, индексов отдельных линий и присутствие ряда линий, неизвестных для перечисленных минералов (6,97 А; 4,40 А; 1,590 А). В дебаеграмме шведского минерала преобладают индексы сложных форм и отсутствуют индексы простых форм, отмеченных и в виде граней на кристаллах: (001), (100), (110), (111) и фиксированных для всех минералов группы мелилита — лейкофана, что заставляет усомниться в правильности расчета и индицировки дебаеграммы шведского аминовита.

12 ДАН, т. 209, № 1

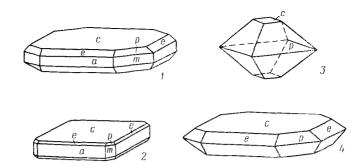


Рис. 1. Кристаллы минералов группы аминовита: 1 и 2 — аминовит (Тува), 3 — аминовит (Швеция), 4 — гугиант. a — (011); c — (001); e — (011); m — (110); p — (111)

Данные анализа изученных образцов пересчитываются на формулы:

- 1) $Ca_{1,94}Na_{0,09}Be_{0,95}Si_2O_6[F_{0,12}(OH)_{0,35}O_{0,20}]_{0,67};$
- $2) \quad Ca_{1,98}Na_{0,10}Be_{1,04}Si_2O_6[F_{0,18}(OH)_{0,62}O_{0,67}]_{1,47};$
- 3) $Ca_{1,92}Na_{0,27}Be_{1,03}Si_2O_6[F_{0,35}(OH)_{0,74}O_{0,55}]_{1,62}$.

В рассматриваемой группе свойства и состав минералов близки. Аминовит, гугнант и мелинофан — тетрагональные с формулой $(Ca_{2-x}Na_x)_2 \times BeSi_2O_6[F, (OH), O]_{1-2}$, при вероятном замещении $Be \to Al$ (шведском образце). Оптические свойства аминовита из Тувы и Швеции близки. Значения их n_0 и n_c хорошо сопоставляются с вычисленными теоретически (по формуле Гладстона и Дэли). Показатели преломления гугианта из Китая завышены, отличаются от теоретически вычисленного показателя преломления соединения $Ca_2BeSi_2O_7$ (1,6423) и не совпадают с вычисленными по той же фомуле n_{cp} изученных китайских образцов (см. табл. 1). В целом значения n_0 и n_c минералов группы лейкофана возрастают при увеличении содержания Ca и O и уменьшении Na и F (рис. 2). Минералы группы лейкофана — мелинофана относятся к структурной группе мелилита (4-6), при замене в структуре мелилита Si на Si (9).

Таблица 1 Химический состав в (вес. %) и свойства минералов группы аминовита— лейкофана

		Аминови	Гугиаит,		Мелинофан,			
Компоненты	Тува				Гугиант, Китай		Норвегия	
SiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MnO+MgO BeO CaO Na ₂ O K ₂ O H ₂ O F Cl -O=(F,Cl) ₂	45,91 (0,7651) * Her Her Her 9,67 (0,3868) 41,52 (0,7415) 1,02 (0,0229) 1,20 (0,1333) 0,86 (0,0452) 0,35 (0,0452) 0,35	44,67 (0,7445) HeT 0,71 HeT 9,70 (0,3880) 41,27 (0,7370) 1,20 (0,0387) 2,09 (0,2322) 1,26 (0,0663) 1,51	43,47 (0,7245) Her Her 0,10 9,35 (0,3740) 39,60 (0,7071) 3,12 (0,1007) 0,19 (0,0040) 2,42 (0,2690) 2,20 (0,1212) 0,94	42,49 4,41 0,31 0,19 6,20 40,27 — 6,45 —	45,26 1,08 0,03 0,50 8,89 42,94 — 0,42 0,73 0,17	44,90 2,17 0,11 0,45 9,49 40,09 0,72 0,20 1,26 0,25 0,18 0,15	43,60 4,61 0,16 9,80 29,56 7,98 0,23 5,43 2,29	43,66 1,57 0,11 11,74 26,74 8,55 1,40 1,30 5,73 2,40
Сумма	99,83	99,68	99,51	100,32	99,68	99,67	80,89	97,40
Аналитик Уд. вес n _g (n ₀)	Н.Г. Шумкова 3,00 1,654	М. Е. Казакова 2,98 1,653	Н.Г.Шумкова 2,98 1,650	Gonyer 2,94 1,647	Чан Л 3, 1,	 ен-чан 03 672		l elsberg 03 612
$n_p(n_e)$ пср. (вычисл)	1,632 1,632		1,628 1,646	1,637 1,649	1,664 1,661		1,593 1,618	

^{*} В скобках везде атомные количества.

Таблица 2 Межплоскостные расстояния минералов группы аминовита — лейкофана и мелилита

	Аминовит (1), Швеция		Гугиант (²). Китай		Аминовит, Тува			Мелинофан, Норвегия		Лейкофан, Тува		
I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)	I	d (Å)
700 400 700 800 100 100 600 100 50 100 100 50 100 100 100 100 50 100 10	6,97 4,90 4,40 4,02 3,48 3,30 2,6145 2,380 2,315 2,141 2,094 1,791 1,784 1,681 1,480 1,447 1,480 1,488 1,359 1,334 1,288 1,359 1,334 1,281 1,280 1,281 1,191 1,174 1,1157 1,144 1,1192	200 002: 200 112; 310 202 222: 400 312: 500 411; 420 402 442 404 204 314; 5:2 54i; 602 701; 424 543; 642 651; 444 741; 831; 206 611; 244 57; 230 51; 208 301; 191 301; 174 101; 157 101; 141 613 721 730 305 543 642 525	42 33340 4343439412127417 12 11 22 3112	5,250 5,040 5,040 3,700 3,610 3,310 2,970 2,765 — 2,359 2,341 2,242 2,242 2,242 2,242 2,242 2,115 2,066 1,900 1,851 1,794 1,747 1,709 1,431 1,420 — 1,327 1,3	110 001 200 111 210 211 310 221 301 311 320 202 212 311 400 222 402 302 401 303 403 404 404 404 104	2 1 2 3 5 10 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,38 5,00 ———————————————————————————————————	110 001 111 210 201 211 102 111 502 311	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,78 4,80 ————————————————————————————————————	1,5 2,5 1,2,5 10 2 4,5 1 2,5 1 1 1 1 2 2 1 1 1	5,98 4,96
5 10	1,072 1,059	525 633	3 3	1,054	542 542	1 1	1,053					_

Таблица 3 Характеристики минералов группы мелилита— лейкофана

	a_0 , $\mathring{\mathbf{A}}$	bo, Å	c ₀ , Å	c _{o.'} a _o	Пространств. группа	z
	Тет	paro	нальн			
Мелилит (6)			5,02	0,648	$D_{2d}^3 = P\overline{42}_1 m$	2
Окерманит (6)	7,84		5,'01	0,639	$\begin{vmatrix} D_{2d}^{3} - P\overline{42}_{1}m \\ D_{2d}^{3} - P\overline{42}_{1}m \\ D_{2d}^{3} - P\overline{42}_{1}m \end{vmatrix}$	2
Ве-окерманит (4)	7,501		4,931	0,656	$D_{2d}^3 = P\overline{42}_1m$	
Силикат Са, Ве, Мg (4)			4,995		Fig. 1	2
Аминовит (1)	13,8	Ì	9,8	0,7	$D_{4h}^{17} = I \sqrt{4/mmm}$	12
» » (Тува)	10,57		9,80	0,937	I 4	8
Гугиант (2)	7,48		5.044	0,674	$D_{2d}^3 = P\overline{42}_1 m$	2
Мелинофан (5)	7,47		4,92			
» » (⁽)	10,60		9,90	0,984	$D_{2d}^3 = P^{\overline{4}2} m$	8
» » (⁷)	10,62		8,94	0,933		8
» » (TyBa)	10,61		9,90	0,934	I 4	8
» » (Норвегия)	10,59		9,90	0,934	14	8
		мбич		,		
Лейнофан (⁸)	7,39	7,09	9,98	1,850	$\begin{vmatrix} D_2^3 - P2_1 2_1 2_1 \\ D_2^3 - P2_1 2_1 2_1 \end{vmatrix}$	4
» » (Tyba)	7,38	7,38	9,99	1,350	$D_2^3 - P2_1 2_1 2_1$	4

При всех колебаниях хорошо заметна постоянная связь величин a_0 и c_0 рассмотренных минералов. Для мелилита $a_{0\,(\text{мел})}=77$, Å и $c_0=5$ Å. Для тувинского аминовита $a_{0\,(\text{амин})}=10{,}56$ Å = $a_{0\,(\text{мел})}\cdot 2$ и $c_{0\,(\text{амин})}=9{,}89$ Å = $c_{0\,(\text{мел})}\cdot 2$ (аналогично мелинофану). У шведского аминовита c_0 одинаково с тувинским и $c_0=o_{0\,(\text{мелин})}\cdot 2$. У гугнанта из Китая a_0 и c_0 аналогичны

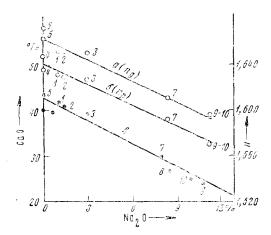


Рис. 2. График изменения показателей преломления $(a, \ \delta)$ и соотношение $\mathrm{Ca}: \mathrm{Na} \ (s)$ минералов группы аминовита — лейкофана

таковым для мелилита. Для лейкофана $a_{0(\text{лейк})} = a_{0(\text{мел})} =$ $= a_{0(\text{мелин})} \cdot {}^{1}/{}_{2}$ И $c_{0(\text{лейк})} =$ $=2c_{0(\text{Mea})}=c_{0(\text{Meauh})}.$ Исследование рассмотренных минералов, проведенное Т. А. Куровой, показало полную аналогию структуры тувинского аминовита со структурой мелинофана. Отсутствие в нашем распоряжении оригинала образцов аминовита из Швеции и гугиаита из Китая не позволило произвести изучение их. Однако близость их основных характеристик позволяет предположить, что аминовит и гугиант представляют собой минеральный один $Ca_2BeSi_2O_6(O, OH, F)$, являющийся крайним кальпиевым аналогом мелинофана и анало-

гичный ему по структуре. Между ампиовитом и мелинофаном, вероятно, существует непрерывный изоморфный ряд с замещением $CaO \rightarrow NaF$ (см. рис. 2) и статистическим распределением Ca и Na. Однако при этом допустимо замещение не более половины всех атомов Ca. При соотношении $Na/Ca = 1.2 \div 1.0$ кристаллизуется лейкофан, с резко ограниченными пределами замещения $Ca \leftarrow Na$, а соединений с Na > Ca не известно.

Параметры a_3 и c_6 гугнанта, вероятно, занижены вдвос, хотя также связаны кратными отношениями с параметрами мелипофана. Наименования «гугнант» и «аминовит» являются синонимами, и за соединением $Ca_2BeSi_2O_6$ (O, F, OH) — кальциевым аналогом мелинофана — можно сохранить название более раннее: «аминовит», а наименование «гугнант» изъять. В группе аминовита — лейкофана выделяются 3 минеральных вида: аминовит, мелинофан и лейкофан. При Na: Ca < 1:3 тетрагональный минерал можно относить и аминовиту, а при Na: Ca = 1:3-1:1,25 — к мелинофану. При соотношении Na: Ca от 1:1,25 до 1:4 минерал представлен пейкофаном формулой $CaNaBeSi_2O_6F$.

Институт минералогии, геохимии и кристаллохимии редких элементов Москва Поступило 47 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ C. S. Hurlbut, Geol. Fören. Forh., **59**, 290 (1937). ² Peng Chi-jui, Tsao Rung-lung, Zou zu-rung, Sci. Sinica, **11**, 7 (1962). ³ J. A. Mandarino, Am. Min., **49**, 212 (1964). ⁴ H. Christie, Norsk. Geol. Toddskr., **42**, 1 (1962). ⁵ C. Goria, Atti. Accad. Sci. Torino, **88**, 1 (1954). ⁶ H. Strunz, Mineralogische Tabellen, Leipzig, 1957. ⁷ A. Dal Negro, G. Rossi, L. Ungaretti, Acta crystallogr., **23**, 2 (1967). ⁸ E. Canillo, G. Giusepetti, V. Tazzoli, Acta crystallogr., **23**, 2 (1967). ⁹ W. C. Brögger, Zs. Krystallogr., **16** (1890).