УДК 513.83

MATEMATUKA

Б. А. ПАСЫНКОВ

О РАЗМЕРНОСТИ ПРОИЗВЕДЕНИЙ НОРМАЛЬНЫХ ПРОСТРАНСТВ

(Представлено академиком П. С. Александровым 4 VII 1972)

Все рассматриваемые пространства считаются хаусдорфовыми, все отображения — непрерывными, для вполне регулярного X считаем $\dim X = \dim \beta X$.

1. Справедлива следующая

T е о р е м а 1 *. Если произведение $X \times Y$ совершенного паракомпакта ** X на слабо паракомпактное пространство Y нормально и счетно паракомпактно, то имеет место неравенство

$$\dim X \times Y \le \dim X + \dim Y. \tag{1}$$

Из сформулированной теоремы вытекает отвечающее на вопрос Π ж. Нагата $\binom{1}{2}$

Следствие 1. Для произведения $X=\prod_{i=1}^k X_i$ совершенных (например,

полных по Yеху) паракомпактов X_i справедливо неравенство

$$\dim X \leqslant \sum_{i=1}^{k} \dim X_{i}. \tag{2}$$

Из следствия 1 вытекает

Следствие 2. Если для вполне регулярных М-пространств X и Y имеет место равенство $\mu(X\times Y)=\mu X\times \mu Y$ (см. (3)), то неравенство (1) выполнено.

Из теоремы 1 вытекает также результат К. Морита (4) о выполнении неравенства (1) для произведения локально бикомпактного паракомпакта на паракомпакт.

Доказательство теоремы 1 опирается на следующее обобщение известного ранее результата об n-мерности предела обратного спектра из n-мерных бикомпактов (5 , 6).

Теорема 2. Пусть дан обратный спектр $S = \{X_{\alpha}, \eth_{\alpha}^{\beta}\}, \alpha \in \mathfrak{A}, c$ совершенными проекциями α^{β} . Если его элементы X_{α} являются слабо паракомпактными нормальными пространствами размерности $\dim X_{\alpha} \leq n$, $\alpha \in \mathfrak{A}$, а предел X спектра S пормален, то (он слабо паракомпактен u) $\dim X \leq n$.

Следствие 3. Если все проекции $\tilde{\omega}_{\alpha}^{\beta}$ спектра $S = \{X_{\alpha}, \tilde{\omega}_{\alpha}^{\beta}\}, \alpha \in \mathfrak{A},$ совершенны, а все его элементы X_{α} паракомпактны, то предел X спектра S является паракомпактом размерности

$$\dim X \leqslant \sup_{\alpha} \dim X_{\alpha}.$$

^{*} Близкий результат одновременно получен В. В. Филипповым (11).
** Совершенный паракомпакт — это паракомпакт, обладающий совершенным отображением на метрическое пространство. Таким образом, совершенный паракомпакт — это то же самое, что паракомпактное M- (или p-) пространство.

В доказательстве теоремы 2 используются следующие две леммы.

 Π емма 1. Пусть дан обратный спектр $S=\{X_{\alpha},\widetilde{\omega}_{\alpha}^{\beta}\},\ \alpha\in\mathfrak{A},\ u_{\beta}$ слабо паракомпактных пространств X_{α} с совершенными проекциями $\widetilde{\omega}_{\alpha}^{\beta}$; тогда для любого открытого покрытия ω предела X спектра S существует такое множество $\mathfrak{A}' \subseteq \mathfrak{A}$ и такие открытые в X_{α} множества O_{α} , $\alpha \in \mathfrak{A}'$, что система $v = \{V_{\alpha} = \mathfrak{I}_{\alpha}^{-1}O_{\alpha}\}, \ \alpha \in \mathfrak{A}', \$ образует точечно конечное и вписанное в ω покрытие предела X.

Eсли еще все пространства X_{lpha} паракомпактны, то можно считать покрытие у локально конечным и, кроме того, можно утверждать существование таких замкнутых в X_{α} множеств $\Phi_{\alpha} \subseteq O_{\alpha}$, $\alpha \in \mathfrak{A}'$, что система $\lambda = \{F_{\alpha} = \eth_{\alpha}^{-1}\Phi_{\alpha}\}, \alpha \in \mathfrak{A}'$, образует покрытие предела X. Лемма 2. Пусть дан обратный спектр $S = \{X_{\alpha}, \eth_{\alpha}^{\beta}\}, \alpha \in \mathfrak{A}$, с совер-

шенными проекциями \mathfrak{d}_{a}^{β} . Пусть еще выполнено условие:

а) существует такое множество $\mathfrak{A}' \subseteq \mathfrak{A}$ и такие открытые в X_{α} множества $O_{\alpha},\ \alpha\in\mathfrak{A}',\ что\ система\ v=\{V_{\alpha}=\widehat{w}_{\alpha}^{-1}O_{\alpha}\},\ \alpha\in\mathfrak{A}',\ образует\ точечно\ ко$ нечное покрытие предела X спектра S.

Tогда существует такое хаусдор ϕ ово пространство Y, такое совершенное отображение $f: X \to Y$ и такое открытое точечно конечное покрытие $\eta = \{U_{\alpha}\}, \alpha \in \mathfrak{A}', npocrpaherba Y, uto$

$$f^{-1}U_{\alpha} = V_{\alpha}, \quad \alpha \in \mathfrak{A}';$$
 (3)

для каждого конечного набора $lpha_1,\ldots,lpha_s$ различных индексов из \mathfrak{A}' можно τ ак определить индекс $\alpha = \alpha(\alpha_1, \ldots, \alpha_s)$, что

$$\alpha(\alpha_1) = \alpha_1, \quad \alpha_1 \in \mathfrak{A}^{\bullet}, \quad \alpha(\alpha_1, \ldots, \alpha_s) \geqslant \alpha(\alpha_1, \ldots, \alpha_r),$$
 (4)

если $\{\alpha_i'\} \subseteq \{\alpha_i\}, j = 1, \ldots, r, i = 1, \ldots, s.$

Для каждого $\alpha=\alpha(\alpha_1,\ldots,\,\alpha_s)$ определено такое совершенное отображение

$$g_{\alpha_1...\alpha_s}$$
: $(U_{\alpha_1...\alpha_s} = \bigcap_{i=1}^s U_{\alpha_i}) \rightarrow (O_{\alpha_1...\alpha_s} = \bigcap_{i=1}^s (\tilde{a}_{\alpha_i})^{-1} O_{\alpha_i})$,

что на множестве $V_{\alpha_1 \dots \alpha_s} = \widetilde{\omega}_{\alpha}^{-1} O_{\alpha_1 \dots \alpha_s}$ имеет место соотношение

$$\tilde{\omega}_{\alpha(\alpha_1 \dots \alpha_s)} = g_{\alpha_1 \dots \alpha_s} \cdot f \tag{5}$$

u на множестве $B_{lpha_1\ ...\ lpha_s}=U_{lpha_1\ ...\ lpha_s}\bigvee_{k>s}U_{lpha_1'\ ...\ lpha_{k'}}$ отображение $g_{lpha_1\ ...\ lpha_s}$ является гомеоморфизмом.

Апалогично теореме 2 (но легче) доказывается

Теорема 3. Если предел X счетного обратного спектра $S = \{X_n, \varpi_n^m\}, n = 1, 2, \ldots,$ из нормальных пространств X_n размерности. $\dim X_n \leqslant r$ с совершенными проекциями ∂_n^m является нормальным и счетно паракомпактным, то dim $X \leq r$.

Помимо теоремы 2, в доказательстве теоремы 1 используется Π редложение 1. Если произведение $X \times Y$ совершенного паракомпакта X на слабо паракомпактное (соответственно паракомпактное) пространство Y нормально и счетно паракомпактно, то произведение $X \times Y$ слабо паракомпактно (соответственно паракомпактно).

В случае метризуемого Х и паракомпактного У предложение 1 установ-

лено К. Морита $(^{7})$.

2. Произведение $X \times Y$ будем называть F'-произведением, если для любого конечного открытого нормального покрытия * о произведения X imes Y существует такое σ -локально конечное и вписанное в ω покрытие

^{*} Открытое покрытие называется нормальным, если оно функционально сжимаемо до замкнутого покрытия. (В нормальных пространствах все копечные открытые цокрытия пормальны.)

 $\mathbf{v} = \{V_{lpha} imes U_{lpha}\},\ \mathbf{\alpha} \in \mathfrak{A}$, этого произведения, что для каждого $\mathbf{\alpha}$ на X и Y существуют функции f_{α} и g_{α} соответственно, отличные от нуля в точках множеств V_{α} и U_{α} и только в них.

В случае нормальных X и Y понятие F'-произведения совпадает с по-

нятием F-произведения в смысле Нагата (8). T е о р е м а 4 . \mathcal{A} ля F'-произведения $X \times Y$ вполне регулярных прост-

ранств Х и У имеет место неравенство (1).

 Π редложение 2. Если произведение $X \times Y$ метрического пространства X на пространство Y нормально u счетно паракомпактно, то $X \times Y$ есть F-произведение.

Из теоремы 4 и предложения 2 вытекает результат Кодама (9) о вы-

полнении неравенства (1) в условиях предложения 2.

Из теоремы 4 вытекает также следствие 1. Кроме того, имеет место

T е о р е м а 5. Для произведения $X \times Y$ паракомпактного Σ -пространства X (в смысле K. Нагами (10)) и паракомпактного P-пространства Y справедливо неравенство (1). Если в X и Y выполнена теорема суммы для Ind, ro

$$\operatorname{Ind} X \times Y \leqslant \operatorname{Ind} X + \operatorname{Ind} Y. \tag{6}$$

Примечание при корректуре. Пусть отображения $p: X \to R$ и $q: Y \to S$ совершенны, пространства R метризуемо, пространство Y нормально и произведение $R \times S$ нормально и счетно паракомпактно. Тогда $X \times Y$ есть F'-произведение и имеем неравенство (1). Если p — гомеоморфизм, то нормальность У несущественна. Если Х полно по Чеху, то несущественна счетная паракомпактность $R \times S$.

В условиях предложения 2 выполняется формула (6), если в Y для Ind

имеет место теорема суммы.

Московский физико-технический институт г. Долгопрудный Моск. обл.

Поступило 29 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. Nagata, Proc. Symp. on General Topology, Prague, 1966, p. 259. ² J. Nagata, General Topology and its Appl., 1, № 1, 65 (1967). ³ K. Morita, Sci. Rep. Tokyo Kyoiku Daigaku, 10, 271 (1970). ⁴ K. Morita, Proc. Japan. Acad., 39, 559 (1963). ⁵ Б. А. Пасынков, ДАН, 121, № 1, 45 (1958). ⁶ S. Mardešić, Ill. J. Math., 4, № 2, 278 (1960). ⁷ K. Morita, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 8, 87 (1964). ⁸ J. Nagata, Bull. Acad. Polon. Sci., ser. math., 15, № 7, 439 (1967). ⁹ Y. Kodama, Am. J. Math., 91, № 2, 486 (1969). ¹⁰ K. Nagami, J. Math. Soc. Japan, 21, № 2, 282 (1969). ¹¹ B. B. Филиппов, ДАН, 209, № 4 (1973).