УДК 539.27 <u>ХИМИЯ</u>

В. А. НАУМОВ, В. Н. СЕМАШКО, Л. Ф. ШАТРУКОВ

ЭЛЕКТРОНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРОЕНИЯ МОЛЕКУЛЫ ДИХЛОРАНГИДРИДА ИЗОЦИАНАТФОСФОНОВОЙ КИСЛОТЫ

(Представлено академиком Б. А. Арбузовым 3 VII 1972)

 $\begin{tabular}{ll} T a б л и ц а 1 \\ \hline Γ еометрі$ **ч** $эские параметры соединений типа R-N=C=O \\ \end{tabular}$

R	$N = C, \mathring{A}$	$C = O, \mathring{A}$	<p-n=c=0< th=""><th>Метод *</th><th>Источник</th></p-n=c=0<>	Метод *	Источник
Н	1,171(10)	1,207(10)	128,5(5)	M.B.	(1)
$ m CH_3$	1,19(3) 1,19(3)	1,19(3) 1,18(3)	125 125(5)	э.д. э.д.	(2) (2)
Cl	1,171	1,207	140 123.7	М.В. М.В.	(3) (4)
H ₃ Si	1,228(7) 1,150(10)	1,158(8) 1,179(10)	118,1(9) 180	Э.Д., М.В. М.В.	(5)
	1,216(9)	1,164(8)	151,7(1,2)	э.д.	(7)
(CH ₃) ₃ Si F₃Si	1,20(1) 1,19	1,18(1) 1,168(25)	150(3) 160,7(1,2)	э.д. э.д.	(8) (7)
Si(NCO) ₃ ClSi(NCO) ₂	1,209(2) 1,213(5)	1,165(2) 1,144(5)	146,4 145	э.д. э.д.	(9) (10)
Cl ₂ Sì(NCÓ)	1,217(5)	1,146(5)	136	э.ц.	(10)
Cl₃Si] 1,219(7)	1,139(8)	138	э.д.	$(^{10})$

^{*} м.в. - микроволновая спектроскопия, э.д. - дифракция электронов.

R-N=C в последних меньше, чем в изоцианатах кремния. С другой стороны, для CH_3NCO данные относительно угла C-N=C противоречивы: по электронографическим данным оп равен 125° , по микроволновым — 140° . Структурные данные об угле P-N=C в изоцианатах фосфора отсутствуют. Авторы работы (11) оценивают его величину $\sim 150^\circ$, объясняя $d_\pi-p_\pi$ -сопряжением фосфора и азота.

Нами проведено электропографическое исследование P(O) Cl_2NCO . Интерес к этому соединению вызван и другим обстоятельством. Известно, что в $PCCl_3$ длина связи P-Cl равна $1,993\pm0,003$ Å (12), тогда как в дихлорпроизводном CH_3POCl_2 , $2,032\pm0,009$ Å (13). Учитывая различную электронодонорную способность CH_3 - и NCO-групп, можно полагать, что r (P-Cl) в P(O) Cl_2NCO будет несколько короче, чем в $CH_3P(O)$ Cl_2 .

Электронограммы паров дихлорангидрида изоцианатфосфоновой кислоты получены на электронографе $\partial \Gamma$ -100A с использованием кубического сектора при расстояниях между соплом испарителя и фотопластинкой 184, 387 и 604 мм. Экспериментальная кривая интенсивности приведена на рис. 1, ее синус — преобразование на рис. 2. По кривой $f(r/s_{\min}, s_{\max})$ оказалось возможным оценить r(P=O) 1,45 Å, r(P-N)=1,67 Å, r(P-Cl) 2,01 Å, угол ClPN 104° и угол OPCl 116°. Получить сведения о других параметрах оказалось невозможным.

Поиск нулевого приближения методом поочередного уточнения параметрев с переменным шагом по экспериментальным кривым $f(r/s_{\min}, s_{\max})$ и M(s) (14) показал, что в этом случае имеет место овражная ситуация и

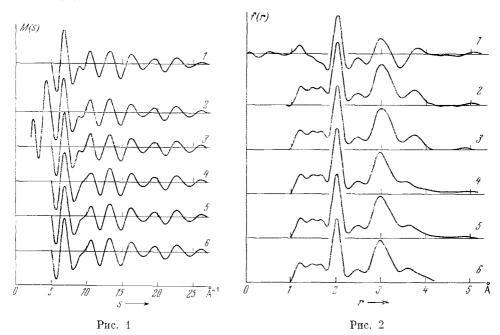


Рис. 1. Сопоставление экспериментальной (1) и теоретических (2—6) кривых интенсивности $\operatorname{Cl}_2\operatorname{P}(O)\operatorname{NCO}$: $2-M(s)_{\text{теор}}$ нулевого приближения, $3-M(s)_{\text{теор}}$ конечной модели (табл. 2), 4, $5-M(s)_{\text{теор}}$, соответствующие свободному и заторможенному вращению ($u_0=4$ ккал/моль), $6-M(s)_{\text{теор}}$ с $\phi=10^\circ$

Рис. 2. Сопоставление теоретических (3-6) и экспериментальных (1,2) кривых радиального распределения $\operatorname{Cl}_2P(O)\operatorname{NCO}$. $1-f_{\operatorname{эксп}}(r/s_{\max},s_{\min}),\ 2-f_{\operatorname{эксп}}(r/O,\ s_{\max})$. Теоретические кривые 3-6 соответствуют теоретическим кривым M(s) 3-6 (рис. 1)

не может быть получено единственного решения о геометрии молекулы в целом. В связи с этим использовался метод сканирования («сетки»). Предполагалось, что изоцианатная группа имеет липейное строение. Параметры варьировались в таких пределах:

Параметр	Нижняя граница	Верхняя граница	∭ar
r (N=C), Å	1,16	1,22	0,03
r (C=0), A	1,16	1,22	0,03
<p—n=c, rpan.<="" td=""><td>120</td><td>150</td><td>7</td></p—n=c,>	120	150	7
<0=Р−N, град.	110	116	2
Ф, град.	0	180	1 5

Остальные параметры при этом фиксировались и принимались равными, как указывалось выше. Угол 0° соответствует трапс-расположению P=O-и N=C=O-групп. В каждом узле «сетки» рассчитывались в Z-приближении $M_{\rm тeop}(s)$ с выводом графической и числовой информации на АЦПУ ЭВМ «Минск-22». Отбор приемлемых $M_{\rm тeop}(s)$ проводился по положению экстремальных точек на кривых интенсивности с отклонениями, не пре-

вышающими ± 0.1 Å $^{-1}$. Статистическая обработка полученных результатов привела к выводам, что 1) наиболее вероятна структура молекулы с $\phi=0^{\circ}$ и 2) оптимальный угол вращения вокруг связи P-N сильно зависит от величины валентного угла P-N=C.

Для транс-структуры были получены такие параметры:

N=C 1,16Å, C=O 1,22Å, P=O 1,45Å, P=N 1,68Å, P=Cl 2,01Å
$$<$$
 N=P=Cl 104°, $<$ O=P=Cl 116°, $<$ P=N=C 120° $\tt M$ $<$ O=P=N 112°.

Последние использовались для экстраполяции $M_{\rm эксп}(s)$ к нулю. Уточнение молекулярных параметров проводилось методом градиента по кривой радикального распределения, $f(r/O, s_{\rm max})$. Полученные результаты представлены в табл. 2. Соответствующие кривые M(s) и f(r) приведены на рис. 1 и 2 (кривые 3).

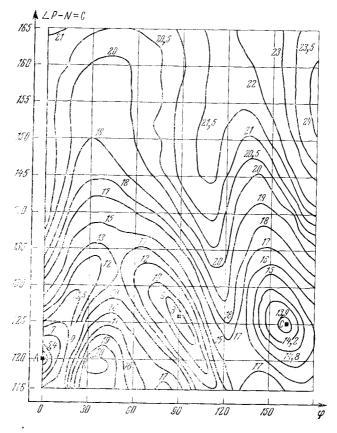


Рис. 3. Карта изоуровней R_f -фактора

Тот факт, что валентный угол у атома азота в Si-производных существенню больше 120° (табл. 1), побудил нас дополнительно проанализировать вопрос о поворотной изомерии дихлорангидрида изоцианатфосфоновой кислоты, поскольку для жесткой транс-структуры угол P-N=C оказался однозначным. С этой целью были построены карты изоуровней факторов соответствия по кривым M(s) и f(r) R_s и R_f . Как видно из рис. 3, на карте R_f -уровней имеются три минимума, причем более глубокий для $\phi=0^\circ$. Плохое соответствие между экспериментальными кривыми и теоретическими, рассчитанными в точках других минимумов для $\phi=90^\circ$ (< P-N=C 125°), позволило исключить из рассмотрения поворотные изомеры молекулы.

r _{ij} , Å	l_{ij} , Å	Углы, град.	
$\begin{array}{cccc} C = O & 1,221 + 0,015 \\ N = C & 1,161 + 0,015 \\ P = O & 1,455 + 0,010 \\ P - N & 1,684 + 0,010 \\ P - C1 & 2,006 + 0,005 \end{array}$	0,048 0,034 0,076 0,046 0,047	0 = P - N	

 R_1 2,3%, R_5 9,6%.

Возможно, что в дихлорангидриде изоцианатфосфоновой кислоты существует свободное или заторможенное вращение вокруг связи P—N. Сопоставление соответствующих теоретических кривых (кривые 4 и 5, рис. 1 и 2) с экспериментальными не подтвердило это предположение.

Таким образом, электропографическое исследование дихлорангидрида изоцианатфосфоновой кислоты показало, что молекулы имеют транс-структуру относительно P = 0- и NCO-групп. Валентный угол у атома азота равен $120.0 \pm 1.5^{\circ}$ и не согласуется с оценочным значением 150° (11). Для оценки ошибки определения угла рассчитаны кривые M(s) и f(r) (кривые 6, рис. 1 и 2) с $\varphi = 10^{\circ}$,

В дихлорангидриде изоцианатфосфоновой кислоты длина связи P-Cl на 0,013 Å больше, чем в $POCl_3$. Небольшое различие связано, по-видимому, с близкими значениями электроотрицательностей изоцианатной групны (2,8) и хлора (3,0). Длина связи P-N (1,684 ± 0,010 Å) близка к соответствующим в $(CH_3)_2NP(O)(C_6H_5)_2$ 1,67 Å (15), в $P(O)(NH_2)_3$ 1,66 ± 0,01 Å (16), $(CH_3)_2NPOCl_2$ 1,67 ± 0,04 Å (17) и др.

Авторы выражают благодарность Ю. П. Егорову за обсуждение результатов.

Институт органической и физической химии им. А. Е. Арбузова Академии паук СССР Казапь

Поступило 6 V 1972

Казанский физико-технический институт Академии наук СССР

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ L. H. Jones, J. N. Shoolery et al., J. Chem. Phys., 18, 990 (1950). ² E. H. Eyster, R. H. Gillette, L. O. Brockway, J. Am. Chem. Soc., 62, 3236 (1940). ³ R. F. Curl, V. M. Rao et al., J. Chem. Phys., 39, 3325 (1963). ⁴ W. H. Hocking, M. C. L. Gerry, Chem. Commun., № 7, 448 (1970). ⁵ H. Oberhammer, Zs. Naturforsch., 26A, 280 (1971). ⁶ M. C. L. Gerry, J. C. Thompson, T. M. Sugden, Nature, 211, 846 (1966). ⁷ W. Aikey, C. Glidewell et al., J. Mol. Struct., 8, 435 (1971). ⁸ K. Kimura, K. Katada, S. H. Bauer, J. Am. Chem. Soc., 88, 446 (1966). ⁹ K. E. Hjortaas, Acta chem. scand., 21, 1381 (1967). ¹⁰ R. L. Hilderbrand, S. H. Bauer, J. Mol. Struct., 3, 325 (1969). ¹¹ Ю. П. Егоров, Г. И. Деркачидр, Теоретич. и эксп. хим., 5, в. 5, 607 (1969). ¹² Т. Могітапі, К. Кисhitsu, Ү. Могіпо, Іпогд. Сhem., 10, 344 (1971). ¹³ В. А. Наумов, В. И. Семашко, ЖСХ, 12, 317 (1971). ¹⁴ В. А. Наумов, В. Н. Семашко, С. А. Шайдуллин, ЖСХ, 14, № 1 (1973). ¹⁵ М.-Ul-Наque, С. N. Caughlan, Chem. Commun., № 24, 921 (1966). ¹⁶ G. L. Bullen, F. S. Stepheus, R. Y. Wade, J. Chem. Soc. A, 1969, 1804. ¹⁷ A. B. Вилков, Л. С. Хайкин, ДАН, 168, 810 (1966).