## Доклады Академии наук СССР 1973. Том 209, № 4

УДК 537.266

### ТЕХНИЧЕСКАЯ ФИЗИКА

### Е. Д. ПОЛИТОВА, Ю. Н. ВЕНЕВЦЕВ

# НОВЫЕ ТЕЛЛУРСОДЕРЖАЩИЕ СЕГНЕТО-И АНТИСЕГНЕТОЭЛЕКТРИКИ СО СТРУКТУРОЙ ПЕРОВСКИТА

(Представлено академиком Н. Г. Басовым 13 VII 1972)

Интересы науки и техники требуют расширения числа соединений и твердых растворов с особыми диэлектричскими свойствами. Использование известного критерия возникновения спонтанной поляризации (1) позволяет проводить направленный поиск новых сегнетоэлектрических окислов металлов (2).

Нами был синтезирован ряд перовскитных соединений состава  $A_2^{2+}B^{2+}Te^{6+}O_6$ , где A=Ba,  $Pb;\;B=Mg,\;Co,\;Ni,\;Zn,\;Mn,\;Ca,\;Cd,\;a$  также

Таблица 1

Условия синтеза, рентгеновские данные, диэлектрические свойства

| N                          | Соединение                                                                                                                                                                  | Τ1, °C                                        | T₂, °C                                 | α, b, c (Å)*, α, β                                                                                                | T <sub>C</sub> , °C                              | Диэлектри-<br>ческие свой-<br>ства ***                          |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6 | $\begin{array}{c} \mathrm{Pb_2MgTeO_6} \\ \mathrm{Pb_2CoTeO_6} \\ \mathrm{Pb_2NiTeO_6} \\ \mathrm{Pb_2ZnTeO_6} \\ \mathrm{Pb_2MnTeO_6} \\ \mathrm{Pb_2CaTeO_6} \end{array}$ | 700<br>700<br>700<br>700<br>700<br>700<br>700 | 840<br>820<br>840<br>820<br>830<br>860 | 7,99 $8,00$ $7,97$ $8,01$ $8,06$ $a = c = 8,26$ $b = 8,24$                                                        | -80<br>+90, -60<br>-30 **<br>55<br>170 **<br>295 | а.с.э.<br>а.с.э., с.и.э.<br>а.с.э<br>а.с.э.<br>а.с.э.<br>а.с.э. |
| 7                          | ${ m Pb_2CdTeO_6}$                                                                                                                                                          | <b>70</b> 0                                   | 860                                    | $ \begin{vmatrix} \beta = 91°50' \\ 90° < a < 90°5' \\ a = c = 8,24 \\ b = 8,28 \\ \beta = 92°35' \end{vmatrix} $ | 295                                              | a.c.ə.                                                          |
| 8<br>9<br>10<br>11<br>12   | $egin{array}{l} { m Ba_2MgTeO_6} \\ { m Ba_2CoTeO_6} \\ { m Ba_2MnTeO_6} \\ { m Ba_2CaTeO_6} \\ { m Ba_2CdTeO_6} \end{array}$                                               | 750<br>750<br>750<br>750<br>750<br>750        | 1100<br>1100<br>1100<br>1100<br>1100   | $ \begin{vmatrix} 90^{\circ} < \alpha < 90^{\circ}5' \\ 8,13 \\ 8,13 \\ 8,19 \\ 8,38 \\ 8,36 \end{vmatrix} $      | 40<br>10 **<br>140 **<br>280<br>290              | c.ə.<br>a.c.ə.<br>a.c.ə.<br>a.c.ə.<br>a.c.ə.                    |

<sup>\*</sup> Определены с точностью  $\pm 0.01$  Å. \*\* Температура  $T_{\rm C}$  оценена из графика (рис. 3).

проведено изучение их структуры и диэлектрических свойств. Подобные соединения были синтезированы ранее ( $^{3-6}$ ), однако экспериментальные данные о характере их диэлектрических свойств до сих пор отсутствуют. Вместе с тем наличие в октаэдрическом положении катиона  $Te^{6+}$  с малым ионным радиусом (0,56 Å) в согласии с ( $^{1}$ ) позволяет ожидать возникновения спотанпо-поляризованного состояния в этих теллурсодержащих соединениях.

Синтез образцов проводился по керамической технологии путем двухстадийного обжига в засыпке для предотвращения потерь легко улетучи-

<sup>\*\*\*</sup> С.э., а.с.э., с.и.э. — сэгнето-, антисегнето-, сегнетоэлектрик соответственно.

вающихся окислов (PbO, TeO<sub>3</sub>, CdO). Продолжительность выдержки при максимальных температурах  $T_1$  и  $T_2$  составляла 6—10 час. В качестве исходных компонент брали стехнометрические смеси окислов и карбонатов: PbCO<sub>3</sub>, MgCO<sub>3</sub>, CoCO<sub>3</sub>, CaCO<sub>3</sub>, CdCO<sub>3</sub>, NiCO<sub>3</sub> (марки ч.д.а.), BaCO<sub>3</sub>, MnO, TeO<sub>3</sub> (марки х.ч.).

В табл. 1 представлены некоторые данные об условиях синтеза, значениях параметров элементарных ячеек, температурах фазовых переходов (на частоте 1 кгц) и характере диэлектрических свойств исследован-

ных соединений.

Параметры заново синтезированных нами перовскитов хорошо согласуются с литературными данными для них (<sup>3-6</sup>). На рентгенограммах всех соедипений наблюдались сверхструктурные линии, обусловленные

упорядоченным размещением катионов подрешеток  $B^{2+}$  и  $B^{6+}$ , так что периоды элементарных ячеек удвоены по всем осям. На рентгенограммах перовскитов № 6 и № 7 рефлексы расшеплены в соответствии с триклинным искажением исходной кубической подъячейки. Истинная элементарная ячейка в этом случае будет моноклинной (7). У остальных соединений линии практически не расщеплены, и их элементарные ячейки могут быть приняты с хорошим приближением за кубиче-

На рис. 1-3 приведены для исследованных соединений, температурные зависимости диэлектрической проницаемости  $\varepsilon$ , тангенса угла диэлектрических потерь tg  $\delta$ , а также зависимости температуры Кюри  $T_{\rm G}$  и корня кубического из объема элементарной ячейки  $V^{V_3}$  от ионного радиуса катионов  ${\bf B}^{2+}$ .

Положение максимума на кривых є и tg δ для соединений №№ 1, 2, 4, 6—8, 11 сдвигается в область более высоких температур (с одновременным увеличе-

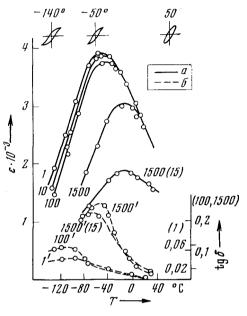



Рис. 1. Температурные зависимости диэлектрической проницаемости  $\varepsilon$  (a) и тангенса угла диэлектрических потерь  $tg \delta$  ( $\delta$ ) для  $Ba_2MgTeO_5$  (цифры у кривых соответствуют частоте измерения в кги, цифры в скобках показывают величину постоянного электрического поля смещения в кв/см)

нием величины є) с ростом частоты измерительного поля. Первое свидетельствует о том, что наблюдаемые фазовые переходы являются размытыми и что в значение возникающей спонтанной поляризации заметный вклад вносит релаксационная составляющая.

Как видно из рис. 1, для соединения № 8 ниже температуры фазового перехода наблюдаются хорошо выраженные петли диэлектрического гистерезиса. Приложение постоянного электрического поля вызывает понижение величины є у этого соединения. На основании полученных данных можно заключить, что соединение Ba<sub>2</sub>MgTeO<sub>6</sub> является с.э. с размытым фазовым переходом.

Для остальных исследованных соединений №№ 1-7, 10-12 петель диэлектрического гистерезиса обнаружить не удалось вплоть до пробивных значений поля. С наложением постоянного электрического поля наблюдалось повышение  $\varepsilon$  для перовскитов № 1 и № 2. На температурной зависимости  $\varepsilon$  для № 2 достаточно ясно выражены две аномалии при +90 и  $-60^{\circ}$ . По-видимому, первая из них отвечает переходу из параэлект-

рической в а.с.э. фазу, а вторая (учитывая повышенное значение  $tg \delta$  на частоте 1,5 Мгц ниже  $T=-60^{\circ}$ ) — переходу из а.с.э. в с.н.э. состояние. Для остальных исследуемых соединений  $\mathbb{N}\mathbb{N} 4-7$ , 11, 12 при приложении электрического поля определить характер изменения  $\varepsilon$  было трудно. Однако имеющиеся экспериментальные данные (отсутствие петель диэлектрического гистерезиса, низкие значения  $\varepsilon$ , триклинные искажения

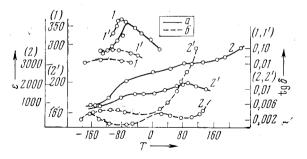



Рис. 2. Температурные зависимости диэлектрической проницаемости  $\varepsilon$  (a) и тангенса угла диэлектрических потерь  $tg \delta$  (б) для  $Pb_2MgTeO_6$  (I, I') и  $Pb_2CoTeO_6$  (Z, Z') на частотах 1 кгц (I, Z) и 1500 кгц (I', Z')

исходной кубической подъячейки для соединений с высокими  $T_{\rm C}$  (N N 6, 7), наличие на рентгенограммах этих соединений сверхструктурных линий, появление которых объясняется антипараллельным смещением одноименных катионов) позволяют заключить, что все соединения N N 3-7, 9-12 являются а.с.э.

Наличие особых диэлектрических свойств у ряда синтезированных и изученных соединений  $Ba_2B^{2+}Te^{6+}O_6$ , где B=Co, Cd, Zn, Mn-катионы, так же как и  $Te^{6+}$  не имеющие конфигурации благородных газов, и отсут-

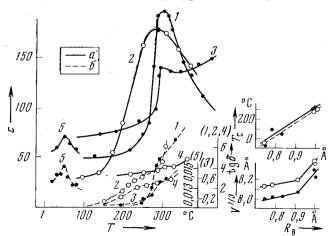



Рис. 3. Температурные зависимости диэлектрической проницаемости  $\varepsilon$  (a) и тангенса угла диэлектрических потерь  $\operatorname{tg}\delta$  (b) для  $\operatorname{Pb_2CaTeO_6}$  (l),  $\operatorname{Ba_2CaTeO_6}$  (2),  $\operatorname{Pb_2CdTeO_6}$  (3),  $\operatorname{Ba_2CdTeO_6}$  (4),  $\operatorname{Pb_2ZnTeO_6}$  (5) на частоте 1 кгц. Зависимости температуры Кюри  $T_{\mathrm{C}}$  и корня кубического из объема элементарной ячейки  $V^{1/5}$  от иопного радиуса R катионов  $\mathrm{B^{2+}}$  (темные точки соответствуют соединениям  $\mathrm{C}$   $\mathrm{A}=\mathrm{Pb}$ , светлые —  $\mathrm{C}$   $\mathrm{A}=\mathrm{Ba}$ )

ствие в их составе высокополяризующихся катионов  $\mathrm{Bi^{3+}}$ ,  $\mathrm{Pb^{2+}}$  и  $\mathrm{Tl^{1+}}$  подтверждает правильность основных положений критерия возникновения спонтанной поляризации, сформулированного в (1).

Экспериментальное обнаружение с.э. свойств у всех полученных перовскитов, а также данные геометрического анализа для кубических структур перовскитов  $Ba_2MgTeO_6$  и  $Ba_2NiTeO_6$  (показывающие, что в этом случае катионы  $Ba^{2+}$  и  $B^{2+}$  находятся в «зажатом» состоянии, а катиону

Te<sup>6+</sup> относительно «свободно») позволяет заключить, что подрешетка Te<sup>6+</sup> играет, очевидно, определяющую (сегнетоактивную) роль в возникнове-

нии спонтанной поляризации во всех изученных перовскитах.

Следует отметить также, что у всех соединений с барием элементарные ячейки при комнатной температуре практически не искажены, тогда как наличие у некоторых из них высокотемпературных фазовых переходов, происходящих обычно с искажением формы исходной кубической ячейки, не вызывает сомнений. Подобное явление ранее установлено также для с.э. соединения  $PbCd_{16}Nb^2/_3O_3$  с  $T_C=280^\circ$  (8, 9).

ется, очевидно, электрострикцией.

Установление сегнето- или антисегнетоэлектрических свойств у изученных соединений находится в согласии с предположением (5) о возможности наличия у некоторых подобных соединений сегнетоэлектрических свойств.

Физико-химический институт им. Л. Я. Карпова Москва

Поступило 7 VII 1972

#### ЦИТИРОВАННАЯ ЛИТЕРАТУРА

<sup>1</sup> Ю. Н. Веневцев, Изв. АН СССР, сер. физ., **33**, № 7, 1425 (1969). <sup>2</sup> Yu. N. V enevtsev, Mat. Res. Bull., **6**, № 10, 1085 (1974). <sup>3</sup> W. Sleight, R. Ward, Inorg. Chem., **3**, 2, 292 (1964). <sup>4</sup> G. Bayer, J. Am. Ceram. Soc., **46**, 604 (1963). <sup>5</sup> G. Bayer, U. S. 3, 309, 169 (Cl. 23—50) (1967). <sup>6</sup> G. Bayer, Fortschr. Mineral, **46**, 1, 41 (1969). <sup>7</sup> В. С. Филипьев, Е. Г. Фесенко, Кристаллография, **10**, № 3, 411 (1965). <sup>8</sup> В. М. Лебедев, Сборн. Электронная техника, сер. 14, Материалы, в. 1, 14 (1970). <sup>9</sup> N. Ісһіпоѕе, Т. Такаһаshі, Ү. Үоко mіzо, J. Phys. Soc. Japan, **31**, 6, 1848 (1971).