Доклады Академии наук СССР 1973. Том 209, № 4

УДК 539.472.3

ФИЗИЧЕСКАЯ ХИМИЯ

Л. В. ПОПОВА, Г. С. МИНГАЛЕЕВ, Л. С. СУГАК, С. А. РУМЯНЦЕВ

РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ В ГЕТЕРОГЕННЫХ ДИСПЕРСНЫХ СИСТЕМАХ

(Представлено академиком И. В. Петряновым-Соколовым 12 VII 1972)

Для выяснения механизма радиационно-химических реакций существенным является знание распределения поглощенной энергии ионизирующего излучения между реагирующими компонентами. Распределение энергии в гомогенных реакционных системах довольно хорошо изучено как теоретически, так и экспериментально (1-5). За последние годы большое развитие получили радиационно-химические процессы в гетерогенных системах. К их числу относятся многочисленные радиационно-каталитические процессы, хемоядерные процессы, а также синтез оловоорганических соединений, в частности, синтез дибутилоловодибромида (ДБОДБ), проводимый в дисперсной взвеси частичек олова в бромистом бутиле (9, 10) и др. Между тем процессы прохождения ионизирующего излучения через гетерогенные системы изучались лишь в слоистых системах (6-8).

Механизм поглощения и переноса энергии в гетерогенных дисперсных системах ранее не исследовался. Первым шагом к такому исследованию является выяснение того, как распределяется поглощенная энергия между компонентами смеси. Обычно в практических измерениях предполагается, что в гетерогенных дисперсных системах энергия распределяется так же, как и в гомогенных растворах, т.е. пропорционально тормозным способностям компонентов (11). Как будет показано ниже, в зависимости от размера частиц твердого компонента могут быть значительные отступления от правила тормозных способностей.

С целью общей формулировки задачи, не связанной с геометрическими размерами радиационно-химического аппарата, мы рассмотрели поглощение энергии гамма-излучения и последующий перенос ее электронами в бесконечной идеально перемешиваемой гетерогенной среде, состоящей из жидкости и диспергированного в ней металла, а имению, в диспергированных в воде алюминии, меди и платине. Рассмотрена также система, в которой проводится радиационно-химический синтез ДБОДБ, состоящая из олова, диспергированного в бромистом бутиле (C_4H_9Br). В качестве источника гамма-излучения предполагается Co^{60} ($E_0 = 1,25$ Мэв). Размеры частиц твердой фазы рассмотрены такие, как в порошке олова, используемого для синтеза ДБОДБ (10), от 10^{-1} до 10^{-3} см. Весовое отношение компонентов равно 1:1.

Расчет проводился методом Монте-Карло. Для нахождения распределения энергии между компонентами гетерогенной системы необходимо знание спектра электронов, выбитых гамма-квантами. Методика нахождения энергии гамма-излучения, поглощенной в отдельных компонентах гетерогенной системы, и вычисленные спектры электронов отдачи приведены в работе одного из авторов (12). Для решения задачи о переносе энергии электронами отдачи дисперсная система была представлена некоторой моделью. Поскольку частицы твердого компонента распределены по объему реакционной смеси в среднем равномерно, частицы были представлены сферами, расположенными в узлах кубической решетки, заполненной жидкостью. При данном весовом отношении компонентов параметры такой ре-

тистки однозначно определяются диаметром частиц*. Использовался метод «укрупненных столкновений» (13). Электронный трек разбивался на участки длиной S-kE, где, в свою очередь, k=k(E) (14). Угловые отклонения на пути S рассчитывались по Мольеру (15). Затем определялись участки трека, проходимые электроном в жидкости и в твердых частицах, и потери энергии в каждой из фаз. Эти потери определялись как непрерывные умножением величины тормозной способности dE/dx на путь, проходимый в каждой из фаз. Величины dE/dx брались из таблиц (16). Электронный трек прослеживался до энергии $E_{\min}=0.02$ мэв. Расчеты проводились на ЭВМ. Количество историй в каждом случае равпялось 5000.

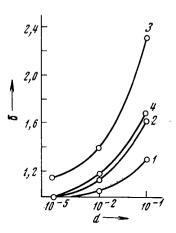
Таблица 1

Система	Диаметр частиц, см	(E_γ) тв $/(E_\gamma)$ ж	Доля энер- гии, перено- симой из твер- дой фазы в жидкую	Кратность увели- чения энергии, поглощенной жидкостью, в ре- зультате пере- носа		Отношение тормозных способностей
	<u>'</u> 		1	1]	<u> </u>
$Al-H_2O$	10-3	1,0	0,14	1,14	0,75	0,75
	10-2	1,0	0,11	1,1	0,8	0,75
	10-1	1,0	0	1	1	0.75
Cu - $\mathrm{H}_2\mathrm{O}$	10-3	1,2	0,25	1,3	0,7	0,7
	10-2	1,2	0,17	1,2	0,8	0,70
	10-1	1,2	0,03	1,04	1,11	0,70
Pb $\mathrm{C}_{2}\mathrm{H}_{9}\mathrm{Br}$	10-3	1,2	0,3	$^{1,4}_{1,3}$	$0,\underline{6}$	0,6
	10-2	1,2	0,25	1,3	0,7	0,6
	10-1	$^{1},^{2}$	0,08	1,1	1,01	0,6
Pt $\mathrm{H}_{2}\mathrm{O}$	10-3	1,5	0,4	1,6	0,57	0,5
	10-2	1,5 1,5 1,5	0,33	1,5_	0,7	[0,5]
	10-1	1,5	0,1	1,15	1,15	0,5

Результаты расчета сведены в табл. 1. $(E_y)_{TB}/(E_y)_{\#}$ обозначает отношение энергии гамма-излучения, трансформированной в энергию электронов отдачи, в твердом и жидком компонентах. $E_{\rm TB}/E_{\rm K}$ — результирующее отношение поглощенных энергий в твердом и жидком компонентах после переноса эпергии электронами отдачи. Из приведенных данных следует, что электроны существенно изменяют первичное распределение эпергии поглощенных гамма-квантов. Если гамма-излучение поглощается таким образом, что в твердом компоненте поглощается больше, либо столько же (алюминий) энергии, сколько в жидком, то в результате переноса энергии электронами отдачи это соотношение изменяется в пользу жидкого компонента. Доля энергии, персносимой из твердых частиц в жидкость, тем больше, чем больше атомный номер твердых частиц и чем меньше их диаметр. Увеличение эффективности переноса энергии из твердой фазы в жидкую для более тяжелых элементов может быть объяснено увеличением с атомным номером элемента среднего расстояния между частицами (поскольку весовое отношение остается постоянным). С увеличением расстояния между частицами переход электронов из твердых частиц в жидкость оказывается более вероятным, чем обратный переход.

Эффективность переноса энергии электронами, естественно, увеличивается с уменьшением размеров частиц твердой фазы. При днаметре частиц 10^{-3} см распределение поглощенной энергии между компонентами становится пропорциональным тормозным способностям компонентов, т.е. при этих размерах эффект гетерогенности перестает сказываться. Поскольку

^{*} Рапее пами были проведены предварительные расчеты, основанные па рассмотрении выборочных траекторий электропа (¹¹). Вследствие грубости приближения результаты получились качественно неверные, что указало на необходимость применения к этой задаче более точных методов. Предварительное сообщение о полученных результатах см. (¹в).


компоненты берутся в равных весовых отпошениях, тормозные способности взяты приведенными к единице веса поглощающего вещества.

На рис. 1 изображена зависимость от размеров частиц отношения энергии, поглощенной в твердой и жидкой фазах, деленного на соответствующее отношение тормозных способностей. Как видно, при уменьшении размера частиц кривые стремятся к единице тем быстрее, чем меньше Z твердого

Рис. 1. Кривые зависимости отношения энергии, поглощенной в твердой и жидкой фазах, деленного на отношение тормозных способностей твердой и жидкой фаз, от размеров частиц

$$\delta = \frac{E_{_{\mathrm{TB}}}}{E_{_{\mathrm{IK}}}} \, \left/ \, \frac{\left(dE/dx\right)_{_{\mathrm{TB}}}}{\left(dE/dx\right)_{_{\mathrm{IK}}}} \, . \right.$$

1 — алюминий — вода, 2 — медь — вода, 3 — платина — вода, 4 — олово — бромистый бутил

компонента. При увеличении размера частиц кривые поднимаются вверх тем круче, чем больше атомный номер твердого компонента.

В соответствии с результатами нашего расчета в дисперсных гетерогенных системах имеет место перенос энергии электронами отдачи из твердой фазы в жидкую. Этот перенос тем больше, чем больше атомный номер элемента твердой добавки. Твердые частицы служат как бы дополнительными источниками энергии. В результате их присутствия в реакционной смеси в целом и в жидком компоненте поглощается больше энергии, чем в жидкости без твердой добавки. Это обстоятельство должно приводить к увеличению радиационно-химического выхода в гетерогенных системах по сравнению с системами без твердого компонента.

Авторы благодарны И. Г. Каплану за плодотворные обсуждения и Б. М. Терентьеву за интерес к работе и поддержку.

Физико-химический пиститут им. Л. Я. Карпова Москва Поступило 8 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Х. Брегер, Основы радиационно-химического аппаратостроения, М., 1967.
² А. Х. Брегер и др., ДАН, 150, 866 (1963). ³ Б. М. Терентьев, В. А. Эльтеков, Д. И. Голенко, Атомная эпергия, 15, 382 (1963). ⁴ Ф. А. Махлис, Тр. П координацион. совещ. по дозиметрии больших доз, Ташкент, 1966. ⁵ Ф. А. Махлис, Тр. П координацион. совещ. по дозиметрии больших доз, Ташкент, 1966. ⁵ Ф. А. Махлис, Атомная энергия, 15, 508 (1963); 17, 147 (1964). ⁶ О. П. Верхградский, И. Н. Червецова, А. М. Кабакчи, Хим. высоких энергий, 3, 444 (1969). ⁷ Г. М. Жаброва, В. Б. Казанский и др., Нефтехимия, 4, 753 (1964). ⁸ К. К. Аглинцев, Дозиметрия ионизирующих излучений, 1957. ⁹ Л. В. Абрамова, Н. И. Шевердина, К. А. Кочешков, ДАН, 124, 681 (1958). ¹⁰ В. Ю. Мирецкий, И. В. Верещинский, А. Ю. И ванов, Химия высоких энергий, 3, 231 (1969). ¹¹ С. Я. П шежецкий, М. (механизм и кинетика радиационно-химических реакций, М., 1968; Радиационная химия, М., 1963. ¹² Л. В. Попова, Л. Б. Чегодаева, Атомная эпергия, 32, 75 (1972). ¹³ Л. Е. Leiss, S. Реппес, С. S. Robinson. Phys. Rev., 107, 1544 (1957). ¹⁴ Г. С. Мипгалеев, Б. М. Терентьев, Радиационная техника, В. 5, 3 (1970). ¹⁵ G. Моliere, Zs. Naturforsch., 2a, 133 (1947). Бета- и гаммаспектроскопия. Под ред. К. Зигбана, М., 1959. ¹⁶ Т. Nelms, Tables of Energy Losses a. Ranges of Electrons a. Positrons, NASA SP-3012. ¹⁷ Л. В. Попова, А. Х. Брегер, В сбори. Радиационная химия, М., 1972, стр. 461. ¹⁸ Л. В. Попова, Тез. доки. па П Всесоюзи. симпозиуме по элементарным процессам химии высоких эпергий, М., 10016, 1971.