УДК 513.83

MATEMATHKA

В. В. ФИЛИППОВ

О РАЗМЕРНОСТИ НОРМАЛЬНЫХ ПРОСТРАНСТВ

(Представлено академиком П. С. Александровым 16 VI 1972)

Первым результатом заметки будет построение нульмерного наследственно нормального пространства X, которое содержит подпространства X_n , $n=1,\ 2,\ldots$, $\dim X_n=\operatorname{Ind} X_n=n$. При этом мы существенно будем использовать педавно построенный М. Э. Рудии замечательный пример наследственно сепарабельного нормального не финально компактного пространства. Он строится в дополнительных теоретико-множественных предположениях, а именно, опираясь на существование «суслинского дерева» *.

Напомним построение примера М. Э. Рудип.

Пусть множество S частично упорядочено соотношением < и:

- а) для любого элемента $x \in S$ множество $\{y \in S, y < x\}$ вполне упорядочено;
- б) всякое подмножество (множества S), состоящее из попарно несравнимых элементов, не более чем счетно;
 - в) всякое линейно упорядоченное подмножество не более чем счетно;
- г) для любого элемента $x \in S$ множество элементов, непосредственно следующих за x, бесконечно;
- д) для любого элемента $x \in S$ множество элементов, следующих за x, несчетно.

Существование такого множества («суслинского дерева») не противоречит аксиомам теории множеств.

Каждой точке $x \in S$ поставим в соответствие трансфинит $p(x) < \omega_1$, равный порядковому типу множества $S_x = \{y \in S, y < x\}$.

Каждому предельному трансфиниту $\alpha < \omega_1$ поставим в соответствие сходящуюся к нему монотонно возрастающую последовательность трансфинитов $\theta_n(\alpha)$, $n=1,2,\ldots$

Каждой точке $x \in S, \ p(x) = \alpha + n, \ n = 0, 1, \ldots$, поставим в соответствие счетную последовательность $\xi_n(x)$ подмножеств множества S таких, что:

- а) $\xi_n(x)$ есть множество, линейно упорядоченное отношением <, оно не содержится ни в каком другом линейно упорядоченном подмножестве множества S и $\sup \{p(y), y \in \xi_n(x)\} = \alpha;$
- б) все точки множества $\{ \hat{y} \in \xi_n(x), p(\hat{y}) < \hat{\theta}_n(x) \}$ сравнимы с x (и, очевидно, меньше x);
- в) если $x_1 \neq x_2$, то при любых m и n множества $\xi_m(x_1)$ и $\xi_n(x_2)$ различны.

Доказать существование таких множеств не составляет труда.

К семейству O(x) отнесем все множества вида

$$\bigcup_{n=i}^{\infty} \{y \in \xi_n, \ p(y) > \alpha_n\},\$$

^{*} Я позпакомился с примером М. Э. Рудин по препринту, любезно предоставленному мне А. В. Архангельским. Приводимое здесь описание слегка отличается от содержащегося в препринте и сообщено мне В. М. Золотаревым.

где α_n , $n=i,\ i+1,\ldots,$ — некоторая последовательность трансфинитов, меньших а.

Введем топологию на множестве S, объявив открытыми те множества, которые вместе с каждой своей точкой $oldsymbol{x}$ содержат некоторый элемент семейства O(x). Построенное пространство S совершенно нормально, наследственно сепарабельно и не финально компактно. Это и есть пример М. Э. Рудин. Его геометрия улавливается леммой, утверждающей, что для любого открытого множества $U \subseteq S$ найдется трансфинит $lpha < \omega_{\scriptscriptstyle 1}$ такой,

$$U \cap \{y \subseteq S, \ p(y) \geqslant \alpha\} = \bigcup_{x \in A} \{y \subseteq S, \ y \geqslant x\},$$

где A- некоторое зависящее от U и lpha подмножество множества $\{m{x} \in m{S},$ $p(x) = \alpha$. Эта лемма, являющаяся одним из основных этапов в доказательстве свойств примера М. Э. Рудин, будет и нами существенио использоваться.

Произведение пространства S на любое пространство со счетной базой также совершенно нормально и, следовательно, наследственно нормально. Чтобы не отвлекаться в дальнейшем от вопросов размерности, заметим здесь же, что регулярное прострацство, являющееся объединением наследственно нормального и одноточечного, наследственно нормально.

Пусть K_n-n -мерный куб. Не составляет труда построить N_i баз $\{B_a\}_{\alpha<\omega_i}$ пространства K_n , так, чтобы кратность семейства границ элементов семейства $\bigcup B_{\alpha}$ не превосходила n.

В произведении $K_n \times S$ переходим к подпространству X_n , оставляя в множестве $K_n \times \{x\}$ точки (y, x), где точка $y \in K_n$ не лежит в границе никакого элемента семейства

Мы покажем, что $\operatorname{Ind} X_n \geqslant \dim X_n \geqslant n$ (первое неравенство верно для всех нормальных пространств); оценка Ind $X_n \le n$ также справедлива и получается из аналогичных соображений. Пусть $\{U_1,\ldots,U_p\}$ — конечное покрытие пространства K_n , в которое нельзя вписать покрытие кратпостп $\leq n$, $U_i^* = (U_i \times S) \cap X_n$, $i = 1, \ldots, p$. Мы покажем, что всякое конечное покрытие пространства X_n , вписанное в покрытие $\{U_1^*,\ldots,U_p^*\}$, нечное покрытие пространства A_n , вписанное в покрытие $\{\mathcal{O}_1,\dots,\mathcal{O}_p\}$, имеет кратность >n. Пусть Γ — такое покрытие, B — некоторая счетная база пространства K_n , $V(b,\gamma)=\cup$ $\{V'\colon V'$ открыто в S, $(V'\times b)\cup X_n\equiv\gamma\}$, где $b\in B$, $\gamma\in\Gamma$. Из сравнения мощности базы B с \mathbf{X}_1 следует, что найдется трансфинпт $\alpha_0<\omega_1$ такой, что для всех $b\in B$ и $\gamma\in\Gamma$ $V(b,\gamma)\cap\{y\in S,\ p(y)\geqslant\alpha_0\}=\bigcup_{x\in A(b,\gamma)}\{y\in S,\ y\geqslant x\},$

$$V(b, \gamma) \cap \{y \in S, \ p(y) \geqslant \alpha_0\} = \bigcup_{x \in A(b, \gamma)} \{y \in S, \ y \geqslant x\},$$

где $A(b, \gamma)$ подобрано нужным образом.

Пусть $x \in S$, $p(x) = \alpha_0$, $\lambda(\gamma) = \cup \{b \in B, (b \times \{x\}) \cap X_n \subseteq \gamma\}$, $\Lambda = \{\lambda(\gamma), \gamma \in \Gamma\}$. Покажем, что семейство Λ покрывает пространство K_n . Допустим, что это не так, т. е. найдется точка $x_1 \in K_n \setminus \cup \Lambda$. Тогда при некоторых $\alpha_1 \geq \alpha_0, \ y_1 \geq x, \ b_1 \in B, \ \gamma_1 \in \Gamma$ имеем $x_1 \in K_n \setminus \bigcup_{\alpha_1 < \alpha < \omega_1} \{ |b| \setminus b, \ b \in B \}, \ (x_1, \ y_1) \in X_n, \quad y_1 \in V \ (b_1, \ \gamma_1).$

$$x_1 \in K_n \setminus \bigcup_{\alpha_1 < \alpha < \omega_1} \{ |b| \setminus b, \ b \in B \}, \ (x_1, y_1) \in X_n, \quad y_1 \in V(b_1, \gamma_1).$$

По выбору α_{θ} , $x \in V(b_1, \gamma_1)$, и, следовательно, $b_1 \times \{x\} \cap X_n \subseteq \gamma_1$, т. е.

 $x_1 \in \lambda(\gamma_1)$, что противоречит выбору точки x_1 , что и требовалось.

Теперь заметим, что покрытие Λ вписано в покрытие $\{U_{\mathtt{1}},\ldots,U_{\mathtt{p}}\}$ и поэтому его кратность >n, а множество $(K_n \times \{x\}) \cap X_n$ плотно $g(X_n \times \{x\})$ и поэтому кратность семейства $\{(\lambda \times \{x\}) \cap X_n, \lambda \in \Lambda\}$, винсанного поэлементно в покрытие Γ , < n. Из этого следует, что кратность покрытия Γ также >n, что и было необходимо для получения оценки $\dim X_n \geqslant n$.

Мы вложим пространство X_n в нульмерное пространство X_n^* . Для этого добавим к пространству X_n еше одну точку, объявив ее окрестностями дополнения до замкнутых множеств, которые могут быть представлены как объединения не более чем счетного числа множеств вида $(K_n \times \{x\}) \cap X_n$. Как легко видеть, подобные окрестности мы можем подбирать открыто-замкнутыми, при этом дополнения до них будут объединениями счетного числа своих замкнутых нульмерных подпространств вида $K_n \times \{x\} \cap X_n$, из чего легко следуют регулярность и нульмерность пространства.

Чтобы получить нульмерное пространство, в котором лежат все X_n , $n=1, 2, \ldots$, достаточно взять дизъюнктную сумму пространств

$$X_n^*$$
: $X = \bigcup_{n=1}^{\infty} X_n^*$.

С использованием пространства М. Э. Рудин могут быть построены и другие примеры, связанные с размерностью. Существует нульмерное совершенное отображение одномерного в смысле dim совершенно нормального пространства на нульмерное — моделью для этого примера может служить пример из (6).

В двух своих обзорах (3 , 4) Дж. Нагата ставил вопрос о справедливости формулы dim $X \times Y \leq \dim X + \dim Y$ для паракомпактных p-пространств.

Положительный ответ дает

Теорема*. Пусть X — нормальное слабо паракомпактное, Y — паракомпактное p-, $X \times Y$ — нормальное счетно паракомпактное, $Y \times \beta Y$ — нормальное пространство. Тогда

$$\dim X \times Y \leq \dim X + \dim Y$$
.

Примечание при корректуре. После того как эта заметка была сдана в печать, я получил более сильные результаты, связанные с размерностью произведений, а именно:

T е о р е м а 1. Пусть в произведении $X \times Y$ вполне регулярных топологических пространств проектирование на один из сомножителей есть замкнутое отображение. Тогда

$$\dim \beta(X \times Y) \leq \dim \beta X + \dim \beta Y$$
.

T е о р е м а $\ 2$. Пусть произведение $X \times Y$ пространства X на параком-пактное p-пространство Y нормально и счетно паракомпактно. Тогда

$$\dim X \times Y \leq \dim X + \dim Y$$
.

Аналогичные результаты справедливы и для размерности Ind.

Теорема 3. Пусть произведение $X \times Y$ топологических пространств нормально и проектирование на один из сомножителей является замкнутым отображением. Если в сомножителях выполняется теорема суммы для размерности Ind для конечного числа замкнутых подмножеств, то

Ind
$$X \times Y \leq \operatorname{Ind} X + \operatorname{Ind} Y$$
.

T е о р е м а 4. Пусть произведение $X \times Y$ пространства X на паракомпактное р-пространство Y нормально и счетно паракомпактно. Если в сомножителях выполняется теорема суммы для размерности Ind для конечного числа замкнутых подмножеств, то

$$\operatorname{Ind} X \times Y \leqslant \operatorname{Ind} X + \operatorname{Ind} Y.$$

См. также (1, 5).

Московский государственный университет им. М. В. Ломоносова

Поступило 9 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. А. Пасынков, ДАН, 189, № 2 (1969). ² Б. А. Пасыпков, ДАН, 209, № 4 (1973). ³ J. Nagata. Proc. 2nd Prague Top. Symp., 1966, p. 259. ⁴ J. Nagata, General Topology and its Appl., 1, № 1, 65 (1971). ⁵ Y. Коdama, Ат. J. Math., 91, № 2, 486 (1969). ⁶ В. В. Филиппов, ДАН, 205, № 1 (1972).

^{*} Как мне стало известно, одновременно и независимо этот же результат спектральными методами получил Б. А. Насынков (2).