УДК 536.6.01.8

АЭРОДИНАМИКА

Ф. Г. ЧЕРЕМИСИН

РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ АЭРОДИНАМИКИ РАЗРЕЖЕННОГО ГАЗА НА ОСНОВЕ КИНЕТИЧЕСКОГО УРАВНЕНИЯ БОЛЬЦМАНА

(Представлено академиком А. А. Дородницыным 29 VI 1972)

Численное решение кинетического уравнения Больцмана даже в случае простейших одномерных движений разреженного газа сопряжено со значительными трудностями и первые результаты были получены сравнительно недавно (1-4). В настоящей работе численным методом решается плоская задача обтекания пластинки конечной длины.

Кинетическое уравнение Больцмана для одноатомного газа, молскулы которого не обладают впутренними степенями свободы, для плоских стационарных движений и в отсутствие массовых сил запишется в виде

$$\xi \frac{\partial f}{\partial x} + \eta \frac{\partial f}{\partial y} = -\nu f + N, \tag{1}$$

где

$$v[f] = \iiint_{-\infty}^{\infty} d\xi_1 d\eta_1 d\zeta_1 \int_{0}^{\pi} d\theta \int_{0}^{2\pi} B(\theta, g) f_1 dz,$$

$$N\left[f\right] = \underbrace{\int\!\!\!\int\!\!\!\int}_{-\infty}^{\infty} d\xi_1,\, d\eta_1,\, d\zeta_1 \int\limits_{\mathbf{0}}^{\mathbf{T}} d\theta \int\limits_{\mathbf{0}}^{2\pi} B\left(\theta,\,g\right) f' f_1 \, d \ ;$$

здесь $f_1 \equiv f(\xi_1, \eta_1, \xi_1, x, y), f' \equiv f(\xi', \eta', \xi', x, y), f' \equiv f_1'(\xi_1', \eta_1', \xi_1', x, y).$ Зависимость скоростей после столкновения ξ' и ξ_1' от скоростей до столкновения ξ и ξ_1 и параметров удара θ и ε , а также функция $B(\theta, g)$ определяются видом потенциала взаимодействия молекул. В приводимом расчете была принята модель абсолютно упругих сферических молекул с постоянным сечением столкновений.

Задача решается в системе декартовых прямоугольных координат (x,y). Пластинка расположена вдоль оси x, ее передняя кромка паходится в точке x=0, а задняя — в точке x=L. Скорость набегающего потока параллельна пластинке и на бесконечном удалении от нее равна U_{∞} .

При численном счете граничные условия ставятся на контуре, образованном прямыми, параллельными коордипатным осям, $x=-a_1$, $x=a_2$, $y=b_1$ и y=0. На первых трех прямых ставится условие, соответствующее певозмущенному состоянию газа, а на прямой y=0 всюду вне отрезка [0,L]— условие симметрии

$$f(\xi, \eta, \zeta, x, 0) = f(\xi, -\eta, \zeta, x, 0), \quad x < 0 \text{ if } x > L.$$
 (2)

На отрезке [0,L] осп x ставится условие взаимодействия газ — поверхность. Была принята зеркально-диффузная схема взаимодействия с коэффициентом аккомодации $\alpha=0.75$ и температурой степки, равной температуре невозмущенного потока газа.

$$f(\xi, \eta, \xi, x, 0) = (1 - \alpha)f(\xi, -\eta, \xi, x, 0) + \alpha f_0(\xi, \eta, \xi, x, 0),$$

$$\eta > 0, \quad 0 \le x \le L.$$
(3)

В выражении (3) f_0 — максвелловская функция, параметрами которой являются температура стенки и плотность газа, определенная по падающему потоку из условия непротекания.

Задача решалась методом итераций и входящая в выражения (2) и (3) функция распределения для $\eta < 0$ каждый раз вычислялась по предыду-

щему приближению.

Число Маха набегающего потока M=2, число Кнудсена K=0.5, параметры L, a_1 , a_2 , b_1 (в длинах свободного пробега) в набегающем потоке равны

L=2; $a_1=2.8;$ $a_2=15;$ $b_1=6.$

Пространство координат было разбито на 250 перавных прямоугольных ячеек $(\Delta x_i, \Delta y_i)$ прямыми

$$x = A \log (1/(1-\beta_1)), \quad 0 \le \beta_1 < 1;$$

 $x = B\beta_1, \quad \beta_1 < 0;$
 $y = C \log (1/(1-\beta_2)), \quad 0 \le \beta_2 < 1.$

Шаг по переменным β_1 и β_2 постоянный, а коэффициенты A, B и C определяют размеры области численного счета. Пространство скоростей было ограничено несколькими тепловыми скоростями и разбито примерно на 1000 равных кубических ячеек. Использовалась ступенчатая аппроксимация функции распределения по всем пяти переменным и массив ее значений в каждой итерации составлял около $250\,000$ чисел.

Для получения конечно-разностных соотношений проинтегрируем уравнение (1) по элементарной ячейке $(\Delta x_i, \Delta y_j)$, ограниченной прямо-угольным контуром l и воспользуемся теоремой Стокса. Получим, обозначив индексами (k) и (k-1) номера итераций в схеме последовательных приближений, а вектором \mathbf{n} — внешнюю нормаль к контуру l,

$$\oint_{l} (\xi, \mathbf{n}) f^{(k)} dl = (v_{ij}^{(k-1)} f_{ij}^{(k)} - N_{ij}^{(k-1)}) \Delta x_{i} \Delta y_{j}.$$
(4)

При численном счете уравнение в форме (4) обладает рядом преимуществ благодаря дивергентной записи его левой части.

Интегралы столкновений вычислялись методом Монте-Карло. Для вычисления одной пары интегралов v_{mlkij} и N_{mlkij} в каждой фазовой точке $(\xi_m, \eta_i, \zeta_k, x_i, y_j)$ разыгрывалось около 100 случайных 5-векторов $(\xi_i, \eta_i, \zeta_i, \theta, \epsilon)$. Компоненты θ и ϵ брались равномерно распределенными на отрезках $[0, \pi]$ и $[0, 2\pi]$ соответственно, а компоненты ξ_i, η_i, ζ_i — распределенными пормально около пекоторой средней скорости газа. Для экономии числа машинных операций применялись коррелированные случайные векторы, которые получались с помощью операций зеркального отражения и циклической перестановки компонент. Учитывались также свойства симметрии преобразования скоростей при столкновениях и одип случайный 5-вектор многократно использовался в различных точках подпространства скоростей и подпространства координат. Все это позволило сократить число машинных операций в 10-20 раз.

При вычислении интегралов столкновений по небольшому числу розыгрышей в каждой итерации для узлов сетки пространства скоростей ξ_m , η_l , ζ_k решается система линейных уравнений

$$\xi_m \frac{\partial \widetilde{f}_{mlk}^{(k)}}{\partial x} + \eta_l \frac{\partial \widetilde{f}_{mlk}^{(k)}}{\partial y} = -\widetilde{v}_{mlk}^{(k-1)} \widetilde{f}_{mlk}^{(k)} + \widetilde{N}_{mlk}^{(k-1)}.$$
 (5)

Коэффициенты и неоднородные члены этой системы $\widetilde{v}_{mlk}^{(k-1)}$ и $\widetilde{N}_{mlk}^{(k-1)}$ являются случайными функциями координат, следовательно, и $\widetilde{f}_{mlk}^{(k)}$ также

есть случайная функция. Ее математическое ожидание, вообще говоря, не совпадает с интегральной кривой, являющейся решением соответствующего уравнения вида (5), в котором величины $\widetilde{\mathbf{v}}_{mlk}^{(k-1)}$ и $\widetilde{N}_{mlk}^{(k-1)}$ заменены их математическими ожиданиями. Таким образом, решение кинетического уравнения в каждой итерации содержит случайную и систематическую ошибки (смещение).

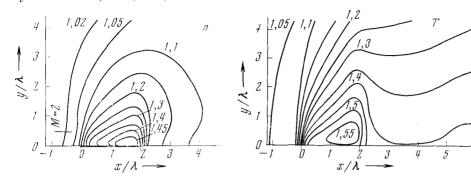


Рис. 1. Линии равной плотности

Рис. 2. Изотермы поля течения

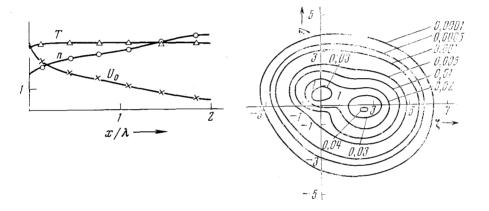


Рис. 3. Изменение аэродинамических величии вдоль пластинки

Рис. 4. Изолинии функции распределения $f(\xi, \eta, 0, 0, 0)$ у передней кромки пластинки

Справедливы следующие утверждения. 1. Относительная величина случайной ошибки в каждой итерации имеет порядок $1/\sqrt{K_2}$, где K_2 — число розыгрышей при вычислении одной пары интегралов столкновений. 2. Относительная величина смещения имеет порядок $1/K_2$. 3. Величина случайной ошибки не накапливается при возрастании номера итерации. 4. Точность вычисления моментов функции распределения определяется полным объемом выборки случайных чисел при вычислении массива значений $f_{m/k}$ в одной точке пространства координат. Если массив $f_{m/k}$ насчитывает K_1 значений, то объем выборки $K_0 = K_1 K_2$ и относительная величина случайной ошибки при вычислении моментов имеет порядок $1/\sqrt{K_0}$. В приводимом примере (рис. 1-4) величина случайной ошибки при определении полей гидродинамических величин не превышает 2%, при вычислении сопротивления около 1%. Точность вычисления функции распределения около 5%.

Решение задачи получено в итоге 20 итераций. Время счета одной итерации составило около 1 часа на машине БЭСМ-6. Счет проводился также при уменьшении объема выборки в несколько раз. При этом средние зна-

чения гидродинамических величин остаются прежними, величина случайной опибки растет обратно пропорционально квадратному корню из числа розыгрышей, а время счета уменьшается пропорционально уменьшению объема выборки.

Вычислительный центр Академии наук СССР Москва Поступило 27 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ф. Г. Черемисин, ДАН, 184, № 4, 790 (1969). ² Ф. Г. Черемисин, Журн. сычислит. матем. и матем. физ., № 3, 654 (1970). ³ В. L. Hicks, S. M. Yen, Rarefied Gas Dynamics, Sixth Symp., 1, N. Y., 1969, p. 343. ⁴ S. M. Yen, H. J. Schmidt, ibid., p. 205.