УДК 539.184.2:548.0.001.1

ФИЗИКА

ю. н. макурин

О СРАВНЕНИИ РЕЗУЛЬТАТОВ МАГНИТОСТАТИЧЕСКИХ ИЗМЕРЕНИЙ С РЕЗУЛЬТАТАМИ ОПТИЧЕСКИХ И РАДИОСПЕКТРОСКОПИЧЕСКИХ ЭКСПЕРИМЕНТОВ

(Представлено академиком С. В. Вонсовским 7 IV 1972)

В работе (³) из сравнения расчетных и экспериментальных данных для статической магнитной восприимчивости Eu° и Sm^{3+} определены разности энергии первого возбужденного и основного J-уровней ($\Delta E_{\mathrm{магн}}$) и обнаружено значительное расхождение этих величин со спектральными данными ($\Delta E_{\mathrm{опт}}$), приведенными в (¹). Так, для Eu^{3+} $\Delta E_{\mathrm{опт}} = 400~\mathrm{cm}^{-1}$, а $\Delta E_{\mathrm{магн}} = 250~\mathrm{cm}^{-1}$. Столь значительное расхождение вряд ли может быть случайным или вытекающим из экспериментальных ошибок. В литературе, насколько нам известно, удовлетворительного объяснения этого расхождения не существует. Настоящая работа представляет собой попытку разрешения этого вопроса.

На наш взгляд, отмеченный выше эффект невозможно объяснить ошибками в расчете либо магнитных, либо оптических свойств исследуемого объекта. Указанное расхождение является следствием общего для всех микрообъектов свойства, так называемого «илюрализма», формулируемого часто так же, как принцип относительности к средствам наблюдения ($^{6-8}$), а поскольку последний носит характер закона природы, то отмеченное выше расхождение носит обязательный характер. Иными словами, требование $\Delta E_{\text{онт}} = \Delta E_{\text{магн}}$ является неправомерным, ибо эти величины получены с помощью различных экспериментальных установок, приспособленных для измерения различных физических величин. По отношению друг к другу результаты этих экспериментов носят дополнительный и в какой-то мере взаимно исключающий характер.

В первом случае (в случае оптического эксперимента) поверочный опыт заключается в фиксировании акта поглощения соответствующим образом приготовленным микрообъектом кванта излучения определенной частоты, т. е. в этом случае измеряется энергия (точнее, разность энергии состояний микрообъекта). Как известно (9), в этом случае собственные фупкции оператора измеренной величины не претерпевают существенных изменений за время измерения и это позволяет при теоретическом объяснении оптических экспериментов использовать стандартную квантовомеханическую расчетную процедуру:

$$\Delta E_{\text{опт}} = \langle \psi_{J_i} | \hat{\mathscr{H}}_{\text{опт}} | \psi_{J_i} \rangle - \langle \psi_{J_0} | \hat{\mathscr{H}}_{\text{опт}} | \psi_{J_0} \rangle,$$

 ψ_{J_0} , ψ_{J_1} — собственные функции основного и первого возбужденного **J**-уровней соответственно; $\hat{\mathcal{H}}_{\text{орт}}$ — гамильтониан, описывающий условия, в которых находится приготовленный для измерения микрообъект, в данном случае— система f-электронов: $\hat{\mathcal{H}}_{\text{онт}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{SL}$ ($\hat{\mathcal{H}}_0$ включает в себя электростатическое взаимодействие f-электронов с ядром и между собой; $\hat{\mathcal{H}}_{SL}$ — оператор спин-орбитального взаимодействия).

В случае измерения статической магнитной восприимчивости поверочный опыт заключается в измерении ускорения, приобретаемого образцом в неоднородном магнитном поле *H*. При известной величине неоднород-

ности поля H каждому значению величины ускорения a сопоставляется определенное значение величины магнитного момента. В данном случае решетка образца играет роль детектора, по ее состоянию судят о свойствах изучаемого микрообъекта. Однако информация о магнитных свойствах f-электронов не может быть передана решетке без участия спин-орбитального взаимодействия, т. е. именно спин-орбитальное взаимодействие формирует смесь ансамблей, образующуюся после измерения и по усреднению по которой определяется результат измерения. Отсюда возникает проблема одновременной диагонализации матриц операторов $\hat{\mu}_r$ и \mathcal{H}_{Ls} , или проблема одновременной измеримости μ_r и \mathcal{H}_{Ls} , что вследствие $[\hat{\mu}_r, \hat{\mathcal{H}}_{Ls}] \neq 0$ и в соответствии с принципом неопределенностей Гейзенберга накладывает дополнительные ограничения на величину магнитного момента, получаемую при магнитостатических измерениях.

Кроме того, как $\hat{\mu}_{\tau}$, так и $\hat{\mathcal{H}}_{LS}$ не коммутируют с гамильтонианом $\hat{\mathcal{H}}_{\text{магн}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{LS} + \hat{\mu}_{\tau} H$) (предполагается, что поле H направлено по оси z). Это привносит дополнительные трудности в интерпретацию процесса магнитостатического измерения: в течение времени измерения собственные функции операторов измеряемых величин будут изменяться. Все это усложняет правила сопоставления экспериментально полученных величин ускорения a исследуемого образца предполагаемым значениям намагниченности. Ниже для конкретности этот вопрос рассмотрен для Eu^{3+} .

Первый возбужденный J-уровень (7F_1) основного терма Eu^{3+} (7F) отстоит от основного J-уровня (7F_0) на 400 см $^{-1}$ (4). В качестве исходного базиса возьмем ($\psi_0{}^0\psi_7{}^0\psi_7{}^1\psi_7{}^{-1}$) — волновые функции двух нижних J-уровней (нижний индекс указывает значение J, а верхний — m_J).

В этом базисе матрицы $\hat{\mu}_r$ и \mathcal{H}_{LS} запишутся так (10):

$$\hat{\mu}_{r} = \mu_{\rm B} \begin{pmatrix} 0 & -2 & 1 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & -\frac{3}{2} \end{pmatrix}, \quad \hat{\mathcal{H}}_{LS} = -A \begin{pmatrix} 12 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 \\ 0 & 0 & 11 & 0 \\ 0 & 0 & 0 & 11 \end{pmatrix}, \tag{1}$$

A — константа спин-орбитального взаимодействия.

Из вида матриц очевидна невозможность одновременного точного измерения μ_r и \mathcal{H}_{LS} (их матрицы невозможно одновременно привести к диагональному виду). Поскольку все-таки измерение происходит, то остается сделать вывод (9), что измеренным величинам соответствуют не операторы, матрицы которых приведены в (1), а какие-то новые операторы $\hat{\mu}_r$ и $\hat{\mathcal{H}}_{LS}$, обладающие общим собственным базисом, и потому физические величины, им соответствующие, являются одновременно измеримыми.

Будем искать собственные функции $\hat{\mu_r}'$ и $\hat{\mathcal{H}}_{LS}$ в виде линейных комбинаций $\psi_i{}^h$. Естественно предположить, что процесс измерения будет протекать таким образом, что в результате этого процесса наблюдатель получит минимальную информацию; другими словами, процесс измерения идет по пути максимальной неопределенности в измеряемых величинах, т. е. нужно требовать максимума от функции (11)

Это условие выполняется в базисе

$$\varphi_{1} = 0.92\psi_{0}^{0\dagger} + 0.38\psi_{1}^{0},
\varphi_{2} = -0.38\psi_{0}^{0} + 0.92\psi_{1}^{0},
\varphi_{3} = \psi_{1}^{1},
\varphi_{4} = \psi_{1}^{-1}.$$
(2)

Далее следует учесть протяженность процесса измерения во времени. Дело в том, что μ_{r} частично обусловлен интерференцией ψ_{0}^{0} и ψ_{1}^{0} , но часть \mathcal{H}_{LS} , не учтенная в \mathcal{H}_{LS} , по-видимому, будет разрушать эту интерференцию и тем самым уменьшать наблюдаемое значение магнитного момента. Если оценить степень разрушения интерференции параметром $e^{-\varepsilon}$, то для величины магнитного момента, обусловленного интерференцией состояний, нобходимо ввести множитель $(1-e^{-\varepsilon})$, что при малом ε с точностью до первого порядка ε дает $1-e^{-\varepsilon} \approx \varepsilon$. Примем для ε справедливым выражение

$$\varepsilon = \mu_r^{\mathbf{n}} H / \Delta \mathcal{H}_{LS}, \tag{3}$$

 μ_r — магнитный момент, обусловленный интерференцией, $\Delta\mathcal{H}_{LS}$ — часть спин-орбитального взаимодействия, не учтенная в \mathcal{H} , $\Delta\mathcal{H}_{LS}=\mathcal{H}_{LS}-\mathcal{H}_{LS}$; в нашем случае $\Delta\mathcal{H}_{LS}=0.15~A$. Учитывая (3), $\hat{\mu}_r$ и \mathcal{H}_{LS} в базисе (2) можно записать как

$$\hat{\mu_{r}} = \mu_{\rm B} \begin{pmatrix} rac{2\mu_{
m B}H}{0.15A} & 0 & 0 & 0 \\ 0 & -rac{2\mu_{
m B}H}{0.15A} & 0 & 0 \\ 0 & 0 & 1.5 & 0 \\ 0 & 0 & 0 & 1.5 \end{pmatrix}, \quad \hat{\mathcal{H}}_{LS} = -A \begin{pmatrix} 11.85 & 0 & 0 & 0 \\ 0 & 11.15 & 0 & 0 \\ 0 & 0 & 11 & 0 \\ 0 & 0 & 0 & 11 \end{pmatrix}.$$

Тогла для магнитной восприимчивости х можно записать

$$\chi = \left[\frac{13N\mu_{\rm B}^2}{\Delta E_{\rm out}} (1 - B) + \frac{9N\mu_{\rm B}^2}{2kT} C\right], \tag{4}$$

$$B = \exp\left(-\frac{0.7\Delta E_{\rm out}}{kT}\right), C = \exp\left(-\frac{0.85\Delta E_{\rm out}}{kT}\right).$$

Графически это уравнение изображено на рис. 1, 2 при $\Delta E_{\text{опт}} = 400 \text{ см}^{-1}$.

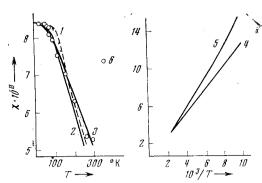


Рис. 1. Температурная зависимость атомной магнитной восприимчивости: 1-3, 6 для $\mathrm{Eu^{3+}}$, 4, 5— для $\mathrm{Ni^{2+}}$. 1, 6— данные (3); кривая 2 построена с учетом только 7F_0 и 7F_1 , кривая 3— с учетом 7F_0 , 7F_1 , 7F_2 ; кривая 4 соответствует закону Кюри, кривая 2 описывается уравнением (5)

Отклонение от экспериментальных данных при высоких температурах объясняется достаточно сильным влиянием 7F_2 -уровня на 7F_4 -уровень. На рис. 1, 3 приведена кривая, полученная при учете 7F_2 . Как видно, согласие с опытом удовлетворительное. Кроме того, эти данные находятся в согласии с оптическими экспериментами. Интересно отметить также, что отклонение экспериментальных данных от теоретической кривой (3) (рис. 1, 1) в области 6D_4 -100° K хорошо объясняется кривой 3 . Это должно свидетельствовать в пользу справедливости сделанных предположений.

Из изложенного выше следует необходимость более осторожной интерпретации результатов измерения статической магнитной восприимчивости вообще, и в частности для d-элементов. Например, для Ni^{2+} (d^8), помещенного в диамагнитную матрицу (считаем, что кристаллическое поле обла-

дает симметрией O_h , $D\approx 1000~cm^{-1}~(^{14})$; спин-орбитальное взаимодействие характеризуется $\lambda\approx -300~{\rm cm^{-1}}~(^{12},^{13}))$, аналогичное ${\rm Eu^{3+}}$ рассмотрение дает

$$\chi = \frac{3.76}{T} \left(2 + \exp \frac{-87}{T} \right)^{-1},\tag{5}$$

в то время как согласно закону Кюри $\chi = 1.26/T$.

Графики обоих уравнений приведены на рис. 1, 4, 5. Из них следует, что $g_{\text{стат}}$ (хотя здесь речь может идти только об эффективном g-факторе) зависит от температуры, всегда выше $g_{\text{э.п.р.}}$ ($g_{\text{э.п.р.}} = 2,24$) и приближается $g_{\text{э.п.р.}}$ при высоких температурах. Имеющиеся у нас экспериментальные данные в какой-то степени подтверждают эти выводы. Так, для оксалата Ni (14) $g_{\text{рез}} = 2,16, g_{\text{стат}} = 2,3-2,4$.

В заключение следует заметить, что отклонение от теоретического соотношения (1) $g_{\rm pes}-2=2-g_{\rm crat}$ для ферромагнетиков может быть объяснено на основе приведенных соображений. В этом случае из-за сильного спин-спинового взаимодействия, обусловливающего ферромагнетизм, грубо можно считать спин С-числом, имеющим вполне определенное значение в основном состоянии (по аналогии с методом спин-гамильтониана, где подобное предположение делается относительно орбитального момента), тогда для рассмотренного выше случая Ni^{2+} получается $\Delta L_z^{\rm pes}=0.24~\mu_{\rm E}$, $\Delta L_z^{\rm crat}=0.19~\mu_{\rm E}$ и соответственно $g_{\rm pes}=2.24,~g_{\rm crat}=1.84$. Для сравнения приводим экспериментальные данные для Ni (2): $g_{\rm pes}=2.21,~g_{\rm crat}=1.84$.

Уральский политехнический институт им. С. М. Кирова Свердловск Поступило 28 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ч. Киттель, Введение в физику твердого тела, М., 1963. ² С. В. Вонсовский, Магнетизм, «Наука», 1971. ³ А. С. Боровик-Романов, Н. Н. Крейнес, ЖЭТФ, 29, в. 6 (12), 790 (1955). М. А. Ельяшевич, Спектры редких земель, М., 1953. ⁵ В. Лоу, Парамагнитный резонанс в твердых телах, М., 1962. ⁶ Н. Бор, Избранные научные тр., 2, «Наука», 1971. ⁷ В. А. Фок, Вопр. философии, № 3, 46 (1970). ⁸ В. А. Фок, Квантовая физика и строение материи, Л., 1965. ⁹ И. фон Нейман, Математические основы квантовой механики, «Наука», 1964. ¹⁰ И. И. Собельман, Введение в теорию атомных спектров, М., 1963. ¹¹ Л. Брилнюэн, Научная неопределенность и информация, М., 1966. ¹² Квантовые парамагнитные усилители, М., 1961. ¹³ К. Бальхаузен, Введение в теорию поля лиганов, М., 1964. ¹⁴ Е. А. Никоненко, Кандидатская диссертация, Свердловск, 1960.