УДК 537.226:539.219.3+537.311.33:539.219.3

ФИЗИЧЕСКАЯ ХИМИЯ

В. С. АРАКЕЛЯН, академик ВИКТ. И. СПИЦЫН, Е. Б. ЧИНСКИЙ

ДЕЙСТВИЕ γ -ИЗЛУЧЕНИЯ СО 60 НА ДИФФУЗИЮ, РАСТВОРИМОСТЬ И ПРИПОВЕРХНОСТНОЕ РАСПРЕДЕЛЕНИЕ Sb 125 B NaCl

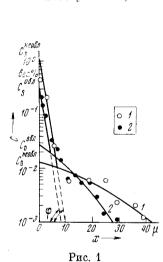
В известных нам исследованиях по влиянию иопизирующих излучений на процессы диффузии в щелочногалоидных кристаллах (1-5) отсутствует информация о диффузии многовалентных ионов. Данная работа имеет целью в какой-то мере восполнить этот пробел.

Образцы представляли собой оптически полированные пластины с размерами $2.0 \times 1.5 \times 0.29$ см³, вырезанные из монокристаллического слитка NaCl. В качестве диффузанта была использована электролитически осажденная металлическая $\mathrm{Sb^{125}}$ с удельной радиоактивностью $10~\mathrm{mC/r^*}$. Диффузия осуществлялась в эвакупрованной кварцевой ампуле, устанавливаемой в печь, которая позволяет вести отжиг в поле γ -излучения. Контакт между $\mathrm{Sb^{125}}$ и поверхностью NaCl обеспечивался двумя способами. В одной серии опытов в ампулы помещались образцы с прижатыми к ним танталовыми фольгами с электролитически осажденной $\mathrm{Sb^{125}}$. В другой серии — металлическая $\mathrm{Sb^{125}}$ напылялась на поверхность образцов NaCl.

Обычно в каждую ампулу помещалось по два параллельных образца. Температура диффузии поддерживалась с точностью ~±3-4° С. В опытах с γ-облучением печь устанавливалась относительно центра кобальтовой установки Института электрохимии АН СССР так, что расстояние от

Таблица 1 Условия диффузионного отжига при γ-облучении

Т-ра диффу- зии, °С	Способ контакта Sb ¹²⁵ с NaCl	Время диф- фуз. отжига ^t отж, час.	Общее время γ -облучения t_0 бл, час.	[†] обл/ [‡] отж
727 700 650 600	Та (Sb ¹²⁵) Напыление Напыление Напыление и Та (Sb ¹²⁵)	9,5 19,5 23,7 31,5	44,5 12,5 44,0 66,5	4,7 2,2 1,8 2,1
550 500	Та (Sb ¹²⁵) Напыление Та (Sb ¹²⁵)	53 103	53 305	$\frac{1,0}{3,0}$


участка с максимальной мощностью дозы ($\sim 10^3$ р/сек) до исследуемых образцов не превышало 20-30 см. Контрольный отжиг без получения проводился в полностью идентичных условиях. В большинстве случаев общее время облучения превышало время отжига примерно вдвое (табл. 1). Только в случае $T=727^\circ$ отжигу предшествовало длительное облучение. Однако, как видно из работ (4 , 5), при достаточно высоких температурах радиационные дефекты, возникшие в результате предварительного облучения даже мощным потоком нейтронов, быстро отжигаются, не внося сколько-нибудь существенного вклада в характер диффузионного распределения примеси.

^{*} Способ получения металлической $\mathrm{Sb^{125}}$ из поставляемого Всесоюзным объединением «Изотоп» раствора $\mathrm{Sb^{125}Cl_3}$ (без посителя) будет описан позже.

Взвешиванием образцов до и после диффузии установлена убыль веса, свидетельствующая о заметном испарении NaCl с поверхности образцов при температурах выше 650—700°. Распределение Sb¹²⁵ в образцах исследовалось методом последовательного стравливания слоев с измерением β-активности снятого слоя на сцинтилляционной спектрометрической полуавтоматической установке «Mark-1» фирмы «Nuclear — Chicago» (США). Травление производилось погружением образца в смесь из 2 мл

Рис. 1. Концентрациоппое распределение Sb¹²⁵ в NaCl после диффузии при 550° (53 часа). *I*, 2 — экспериментальные точки и кривые, характеризующие необлученный и облученный образец соответственно

Рис. 2. Температурная зависимость коэффициента диффузии (1, 2), растворимости (3, 4), поверхностиой концентрации (5, 6) сурьмы в NaCl (черные точки соответствуют облученным образдам; светлые — пеоблученным)

10-1 10-1 10-2 10-10

800 750 700 650 600 550

П

диоксана и 0.4 мл дистиллированной воды. Вода растворяла поверхность NaCl, тогда как относительно большой объем дпоксана обеспечивал равномерное смачивание всей поверхности пластины. Растворы после травления сливались в прилагаемые к установке «Mark-1» специальные флаконы. Объем раствора в каждом флаконе доводился до 20 мл смесью диоксана с метиловым спиртом, являющейся сцинтиллятором. Использование эталонных растворов с известным содержанием Sb¹²⁵ той же удельной радиоактивности позволяло вычислить концентрацию сурьмы в каждом из снятых слоев. Толщина снятого слоя определялась взвешиванием до и после каждого травления с точностью до 0,2 мг. По полученным результатам строились концентрационные кривые. Типичный график $\lg C = f(x)$ представлен на рис. 1. Как видно из рис. 1, экспериментальные точки в объеме образцов укладываются на теоретические erfc-кривые (кривые 1 и 2), по которым с использованием методики (6) вычислялись коэффициенты диффузии ($D_{
m Heo 6\pi}$ и $D_{
m o 6\pi}$ соответственно). В приповерхностной области обнаруживается линейная зависимость $\lg C$ от x. Пересечения прямых $\lg C(x)$ с осью ординат дают поверхностную концентрацию

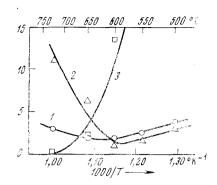


Рис. 3. Температурная зависимость радиационного эффекта. $I - D_{\text{пеобл}} / D_{\text{обл}}$; $2 - C_0^{\text{обл}} / C_0^{\text{пеобл}}$; $3 - C_s^{\text{пеобл}} / C_s^{\text{обл}}$.

 $\mathrm{Sb^{125}}$ $C_\mathrm{s}^{\mathrm{необл}}$ и $C_s^{\text{обл}}$ пля необлученного и облученного образцов. Если экстраполировать erfc-кривые 1 и 2 до плоскости x=0, то получим граничные $C_0^{\text{необл}}$ и $C_0^{\text{обл}}$, конпентрации рые характеризуют растворимость сурьмы в NaCl. Температурная зависимость полученных описанным способом величин D, C_0 и C_s (для облученных и необлученных образцов) представлена на рис. 2. Как правило, точки на рис. 2 представляют собой среднее арифметическое из результатов для двух параллельных образцов. Отклонения отдельных значений от средних величин D и C_0 более значительны (±30-50%) при температурах выше 600-650°. Следует

отметить, что при высоких температурах менее удовлетворительно и соответствие экспериментальных точек теоретической erfc-кривой на графиках $\lg C(x)$. Это может быть обусловлено двумя причинами: одновременным с диффузисй сурьмы испарением NaCl с поверхности образцов и изменением характера взаимодействия Sb с NaCl при высоких температурах.

Из полученных экспериментальных результатов (рис. 2) следует, что диффузионный отжиг системы $\mathrm{Sb^{125}} \to \mathrm{NaCl}$ при $500 \div 727^\circ$ в поле γ -излучения $\mathrm{Co^{60}}$ с мощностью дозы порядка 500 р/сек приводит (по сравнению с контрольным отжигом без облучения) к уменьшению коэффициента диффузии и поверхностной концентрации и к увеличению растворимости сурьмы в NaCl. Температурная зависимость относительного радиационного эффекта отображена на рис. 3.

Перейдем к более детальному анализу установленных закономерностей. Температурная зависимость коэффициента диффузии Sb в NaCl без облучения (рис. 2), вычисленная методом паименьших квадратов, описывается уравнением $D=2,1\cdot 10^{-8}\cdot \exp{(-12\,100/RT)}$. Энергия активации E=12,1 ккал/г моль = 0,52 эв по порядку величины совпадает с данными для лиффузии других многовалентных ионов (табл. 8 в (7)). Соответствие обнаруживается и в величине понного радиуса диффузанта, если принять, что Sb диффундировала в форме Sb³+ с $R_i=0,90$ Å. Отсюда следует возможная общность микроскопического механизма диффузии всех рассматриваемых элементов. Экспериментальные значения D, полученные для облученных образцов в области $500-650^\circ$, аппроксимируются прямой, выражаемой уравнением $D_{coff}=1,2\cdot 10^{-6}\cdot \exp{(-20\,300/RT)}$, которая пересекает прямую 2 в области 750° . В области $T>650^\circ$ обнаруживается усиление радиационного эффекта.

В качестве возможной модели рассмотрим следующую. Ион Sb³⁺ перемещается в NaCl, лишь будучи связанным в комплекс с катионной вакансией (или вакансиями) Na⁺. Диффузия осуществляется путем обмена местами ионов Na⁺ матрицы с катионными вакансиями. Следовательно, энергия активации E представляет собой энергию перемещения этого комплекса. При облучении возникает высокая концентрация свободных посителей заряда, которые (в частности, дырки) локализуются на катионных вакансиях, входящих в комплекс. Это приводит к увеличению эффективного заряда комплекса и препятствует дальнейшей его диффузии. Диффузия становится возможной только после делокализации дырок, для необходима $\Delta E = E_{\text{облуч}}$ осуществления которой энергия, равная $-E_{\text{необлуч}} = 0.88 - 0.52 = 0.36$ эв. В области температур выше $600 - 650^{\circ}$, вероятно, формируются другие, термически более устойчивые центры окраски, что вызывает замедление диффузии и в этой температурной об-

Растворимость ($C_{\mathfrak{g}}$) в необлученном NaCl монотонно снижается от 0.037% Sb при 500° до 0.016% при 727° (рис. 2, кривая 4). Облучение приводит к повышению C_0 во всем исследованном интервале температур, однако температурная зависимость $C_{\scriptscriptstyle 0}$ приобретает ретроградный характер с минимумом в области $550-600^{\circ}$. Сопоставление кривых 1 и 2 на рис. З показывает качественное совпадение характера температурной зависимости радиационного эффекта для D и C_0 , причем при $T > 600^\circ$ чувствительность C_0 к ү-облучению заметно повышается. Пользуясь рассмотренной выше моделью микромеханизма диффузии, можно объяснить и увеличение растворимости в поле у-облучения.

Поверхностная концентрация C_s , как это видно из рис. 2, по мере повышения температуры уменьшается почти экспоненциально (кривая θ). Характер температурной зависимости C_s для облученных образцов качественно повторяет зависимость $C_0^{\text{обл}}$ от T (ср. кривые 3 и 5). Но если при $C_{\rm s}^{
m ool} < C_{\rm s}^{
m Heool}$ (т. е. действие облучения аналогично повышеиню температуры), то при $T > 650^\circ$ зависимость оказывается обратной. Вследствие этого на рис. З кривая температурной зависимости радиационного эффекта для \hat{C}_s , в отличие от кривых I и 2, не имеет экстремума.

Из рис. 1 видно, что прямые $\lg C(x)$ для облученного и необлученного образнов имеют один и тот же угол наклона ф. Следует отметить, что величина ϕ постоянна и равна $15.4 \pm 0.3^{\circ}$ для всех без исключения исследованных образцов, независимо от температуры диффузионного отжига и от того, подвергался образец в процессе отжига у-облучению или нет. Следовательно, величина ф является параметром, характеризующим особенности материала исследования. Постоянство угла ф, а также аналогия в действии облучения и температуры описывались нами ранее (⁸) в связи с исследованием влияния собственного излучения Sb124 на приповерхностное распределение Sb в Ge. В указанной работе был установлен механизм процессов, приводящих к наблюдаемым закономерностям. По аналогии с (в) можно предположить, что в рассматриваемом случае имеет место термическое травление поверхности NaCl сурьмой с формированием ямок травления (по-видимому, пирамидальной или конической формы); в этих ямках локализуется Sb, причем в большей мере при более низких температурах и в отсутствие облучения. Естественно, что при достаточно высоких температурах воздействие γ -облучения на величину C_s оказывается пренебрежимо малым по сравнению с термическим, а величины $C_{
m s}$ приближаются к соответствующим значениям C_0 . В этой связи представляется закономерным общее для любой температуры соотношение $C_{s}^{000} \leqslant C_{s}^{\text{необл}}$, но оно противоречит обнаруженной экспериментально закономерности при $T>650^\circ$: $C_s^{06\pi}>C_s^{\text{необл}}$. Однако, если учесть, что при $T>650^\circ$ γ -облучение приводит к существенному увеличению C_{\circ} (из рис. 2 видно, что $C_0^{\text{обл}} > C_0^{\text{побл}}$) и что $C_s \geqslant C_0$, то причина «аномальной» зависимости ($C_s^{\text{обл}} > C_s^{\text{необл}}$) станет понятной.

Институт общей и неорганической химии им. Н. С. Курпакова Академии наук СССР

Поступило 4 XI 1972

Институт физической химии Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. С. Аракелян, Атомная техника за рубежом, № 4, 29 (1969). ² Hj. Маtz-ke, G. Rickers, G. Sørensen, Zs. Naturforsch., 24a, № 5, 820 (1969). ³ H. E. Гегузин, Ю. И. Бойко, ДАН, 172, 820 (1967). ⁴ P. Schmeling, Phys. stat. sol., 11, 175 (1965). ⁵ W. Bannasch, P. Schmeling, J. Phys. and Chem. Solids, 26, № 12, 1999 (1965). ⁶ P. Ш. Малкович, ФТТ, 1, № 4, 606 (1959). ¬ А. Н. Мурин, Б. Г. Лурье, Диффузия меченых атомов и проводимость в ионных кристаллах, Л., 1967. В В. С. Аракелян, В. И. Спицын, В. Б. Лазарев, ДАН, 467 (4060). 187, 116 (1969).