ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.28

В. Е. ПРУСАКОВ, Ю. Н. НОВИКОВ, Р. А. СТУКАН, М. Е. ВОЛЬШИН, член-корреспондент АН СССР В. И. ГОЛЬДАНСКИЙ

ПРИМЕНЕНИЕ ЭМИССИОННОЙ ГАММА-РЕЗОНАНСНОЙ СПЕКТРОСКОПИИ ДЛЯ ИЗУЧЕНИЯ СТРОЕНИЯ СЛОИСТЫХ СОЕДИНЕНИЙ ГРАФИТА С КОБАЛЬТОМ И ХЛОРИСТЫМ КОБАЛЬТОМ, МЕЧЕННЫХ ИЗОТОПОМ Со-57

В предыдущих работах (1, 2) с помощью метода гамма-резонансной сцектроскопии, основанной па эффекте Мёссбауэра, нами изучались соелинения внепрения графита с хлоридами железа и продукты их восстановления. Как известно, мёссбауэровский изотоп Fe-57 может образовываться при ядерном распаде радиоактивного изотопа Со-57 путем электронного захвата. При этом сначала образуется высокозаряженный положительный кон железа, который затем начинает притягивать электроны из ближайшего окружения. В ряде работ было показано, что в матрицах, где имеются свободные электроны или где атом кобальта связан в молекуле с системой сопряженных связей, атом железа после распада Со-57 стабилизируется преимущественно в химическом состоянии, сходном с состоянием исходного атома кобальта (3, 4). Так как в графите концентрация электронов велика, можно предположить, что постоффекты в слоистых соединениях Со-графит будут несущественны и по состоянию железа, образующегося при радиоактивном распаде Со-57 в соединениях внедрения кобальта с графитом, можно делать заключения о химическом состоянии кобальта.

В настоящей работе с помощью метода эмиссионной г.р. спектроскопии изучались соединения графит — CoCl₂ и продукты их восстановления литийдифенилом и водородом.

Исследованные соединения синтезировались, как описано в (5), с использованием радиоактивного изотопа Co-57 с носителем и ориентированного графита. Для сиятия эмиссионных г.р. спектров применялся гаммарезонансный спектрометр электродинамического типа с движущимся поглотителем. В качестве стандартного поглотителя использовался ферроцианид калия $K_4[Fe(CN)_6] \cdot 3H_2O$, обогащенный изотопом Fe-57. Шириналинии (Γ) для источника Co-57 в хроме с данным поглотителем составляла 0.35 ± 0.04 мм/сек. Величины изомерных сдвигов (и.с.), приведенные в табл. 1, даны относительно нитропруссида натрия. Для образцов, в которых наблюдалась магнитоупорядоченная структура, спектр снимался в большом и малом интервалах скоростей для более детального анализа центральной части спектра.

В эмиссионном г.р. спектре соединения графит — CoCl₂ при 80° К (рис. 1a) наблюдаются два дублета с одинаковыми химическими сдвигами. характерными для высокоспинового двухвалентного железа. Такой же характер, как было показано ранее (¹), имеет и г.р. спектр поглощения соединения FeCl₂ — графит. Соотношение величин квадрупольных расщеплений для внешнего и внутреннего дублетов в обоих случаях примерно одинаково, хотя сами значения квадрупольных расщеплений несколько различаются, что может объясняться различием в межатомных расстояниях Fe — Cl в соединении FeCl₂ — графит и в соединении, образующемся при радпоактивном распаде Co-57.

Таблица 1 Параметры эмиссионных г.р. спектров соединений кобальта с графитом и г.р. спектров поглощения соответствующих соединений железа

Соединение	T, °K	Высокоспиновое Fe ²⁻ ;				Комплекс Fe ⁰			Магнитоупорядоченная компонента			
		п.с., мм/сек <u>+</u> 0,04		к.р., мм/сек -1-0,04		к.р.* (2)	и.с., мм/сек	к.р., мм/сек	содерж.,	и.с., мм/сек	Илок, кэ	содерж.,
		1	2	1	2	к.р. (1)	±0,0°	± 0.05	содерж., % +5,0	-0,04	±10	% 5,0
 Со⁵⁷СІ — графит FeCl₂ — графит Носле восст. LiPl₁ Со⁵⁷Сl₂ — графит FeCl₂ — графит Последующий про грев в водороде при 500 — 600° С ! Со⁵⁷Сl₂ — графит FoCl₂ — графит 	80 80	1,38 1,48	1,42 1,50 ,51 ,48	1,23 1,12	2,44 2,04 2,70 2,45	1,74 1,82	0,55 0,60	1,00	35 45	0,41 0,40 0,30 0,54 0,34	318 319 315 342 329	45 45 70 88

^{*} Квадрупольное расщепление.

В работе (6) было сделано предположение, что появление второго дублета в спектре соединения $FeCl_2$ — графит объясняется внедрением между сетками графита наряду с молекулами $FeCl_2$ молекул хлора, образующихся при восстановлении соединения $FeCl_3$ — графит водородом по реакции $2FeCl_3 \rightarrow 2FeCl_2 + Cl_2$ и не успевающих выйти из-за пространственных затруднений. Однако квадруплетный характер спектра можно также объяснить двумя возможными кристаллографическими положениями молекул $FeCl_2$ в графите (1). Наличие второго дублета в эмиссионном спектре соединения $CoCl_2$ — графит говорит в пользу второго предположения,

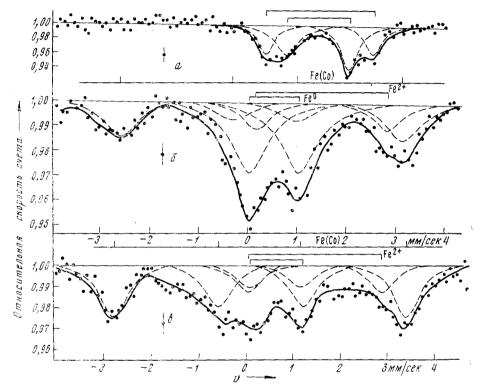


Рис. 1. Эмиссионные г.р. спектры слоистых соединений кобальта с графитом. $T=80^\circ$ К. $a-{\rm Co^{57}Cl_2}-{\rm графит};$ $b-{\rm после восстановления литий дифенилом: } a-{\rm последующего восстановления водородом}$

так как указанное соединение получалось хлорированием смеси металлического кобальта с графитом. когда, как показано ранее $(^{7})$, внедрение молекул хлора между сетками графита маловероятно.

Таким образом, строение слонстых соединений графита (ССГ) с CoCl₂

аналогично строению ССГ с FeCl₂.

После восстановления соединения $CoCl_2$ — графит литий дифенилом характер эмиссионного г.р. спектра сильно изменился (рис. 16). Основными компонентами спектра при 80° К являются секстет (45% всей площади спектра) с $H_{\text{лок}} = 318 \pm 10$ кэ и дублет (около 35%) с параметрами, близкими к параметрам комплекса нульвалентного железа с графитом (см. табл. 1), наблюдавшегося после аналогичного восстановления соединения $FeCl_2$ — графит (2). Кроме этих двух форм, в эмиссионном г.р. спектре наблюдается дублет высокоспинового двухвалентного железа (около 10%). Внимательное рассмотрение соответствующего спектра поглощения соединения $FeCl_2$ — графит, восстановленного литийдифенилом, показало, что и в этом случае присутствует форма высокоспинового двухвалентного железа примерно с тем же содержанием. Это указывает

на то, что природа компоненты Fe^{2+} в эмиссионном г.р. спектре, по-видимому, связана с неполным восстановлением исходного соединения, а не с последствиями ядерного распада. Таким образом, на основании сходства параметров эмиссионного г.р. спектра соединения графит — $CoCl_2$, восстановленного литий дифенилом, с параметрами г.р. спектра поглощения соответствующего соединения железа, можно сделать вывод, что при восстановлении слоистого соединения хлористого кобальта с графитом литий дифенилом некоторая часть атомов кобальта образует комплекс нульвалентного металла с графитом, причем, благодаря палично в графите свободных электронов, этот комплекс устойчив по отношению к постэффектам ядерного превращения.

После дальнейшего восстановления образца графит — $CoCl_2$ в токе водорода при 500° С преобладающей компонентой в спектре стаповится секстет (около 70% всей площади при 80° К) с величиной $H_{\text{лок}}$, характерной для примеси железа в матрице из металлического кобальта (8), что говорит в пользу образования агрегатов металлического кобальта. Кроме этого, в центральной части спектра наблюдается набор форм железа, одну из которых можно отнести к Fe^{2+} (рис. 1e). Относительное содержание последних изменяется со временем в сторону увеличения доли Fe^{2+} , что можно объяснить окисляющим влиянием воздуха. Изменение г.р. спектров образцов, контактировавших с воздухом, наблюдалось пами ранее так-

же и для сходных соединений железа.

Таким образом, метод эмиссионной г.р. спектроскопии позволил показать, что из-за большой концентрации свободных электронов в графите слоистые соединения последнего с кобальтом устойчивы к последствиям ядерного распада изотопа Co-57 путем К-захвата. Причем продукты восстановления соединения внедрения CoCl₂ — графит литий дифенилом и водородом сходны с соединениями, получающимися при аналогичном восстановлении FeCl₂ — графит.

Ипститут элементоорганических соединений Академии наук СССР Поступило 13 III 1972

Институт химической физики Академии паук СССР Москва

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. Н. Новиков, М. Е. Вольнин и др., ЖСХ, 11, 1039 (1970). ² Р. А. Стукан, В. Е. Прусаков и др., ЖСХ, 12, № 4 (1971). ³ R. T. Mullen, Mössbauer Effect Methodology, 5, 95 (1969). ⁴ А. Nath, М. Р. Klein et al., ibid., р. 169. ⁵ Ю. Н. Новиков, В. А. Семион и др., ЖСХ, 14, № 1 (1973). ⁶ Ј. G. Нооley, J. R. Sams, B. V. Liengme, Carbon, 8, № 4, 467 (1970). ¬ I. I. Pitts, L. L. Lyon, Proc. Conf. Carbon 5th, Univ. Park Penna, 1, 32 (1962). ¬ G. K. Wertheim, Phys. Rev. Lett., 4, 403 (1960).