ХИМИЯ

УДК 542.952.1+547.597.1

Академик Б. А. АРБУЗОВ, З. Г. ИСАЕВА, В. А. ШАЙХУТДИНОВ

ВЗАИМОДЕЙСТВИЕ β-3,4-ЭПОКСИКАРАНА С УКСУСНЫМ АНГИДРИДОМ

В ходе сравнительного изучения превращений стерсоизомерных 3,4-эпоксикаранов в реакциях нуклеофильного замещения были выявлены пекоторые различия в их протекании, которые объясняются различием в конфигурации С-атомов эпоксидного цикла (в пространственном положении С—О-связей относительно циклопропанового кольца) (¹, ²). В продолжение этих работ мы изучили превращения β-3,4-эпоксикарана в условиях реакции электрофильного присоединения на примере взаимодействия с уксусным ангидридом.

Ранее было показано, что реакция α-3,4-эпоксикарана с уксусным ангидридом протекает по трем направлениям (3, 4): 1) образования продуктов присоединения уксусного ангидрида к эпоксиду, 2) образования эфиров изомерных эпоксиду непредельных спиртов и 3) изомеризации эпоксида в карбонильные соединения.

Продукты реакции β-3,4-эпоксикарана с уксусным ангидридом (5-часовое кипячение раствора 51 г эпоксида в 208 г уксусного ангидрида) также представляют собой сложную смесь: с помощью газожидкостной

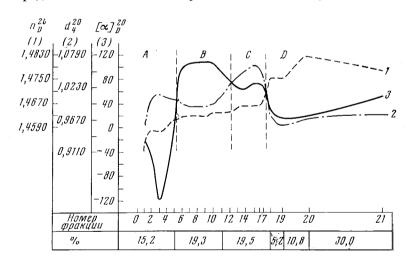


Рис. 1. График разгопки реакционной смеси из реакции β-3,4-эноксикарана с уксусным ангидридом

хроматографии (г.ж.х.) * найдено, что реакционная смесь состоит из 15 компонентов. Для их разделения использовались фракционирование на ректификационной колонке и хроматография на силикагеле в колонках и в тонком слое.

На рис. 1 графически представлены результаты фракционирования на колонке в 35 т.т. И.-к. спектр ** фракции № 1 (зона A) указывал на наличие в ней альдегида ($\nu_{\rm c=o}$ 1732, $\nu_{\rm c-H}$ 2705 см $^{-1}$), который оказался

** И.-к. спектры снимались на спектрометре UR-10.

^{*} Г.ж.х. анализ проводился на хроматографе «Цвет-6», газ-носитель — гелий.

идентичным 1,6,6-триметилбицикло[3.1.0] гексил-1-формальдегиду (V) (5) (смешанная проба семикарбазонов с т. пл. $121-123^{\circ}$ плавилась без депрессии).

В продуктах фракций № 3, 4 аналогичным путем (и.-к. спектр $v_{c=0}$ 1704—1708 см⁻¹; 2,4-динитрофенилгидразон, т. пл. 160—162° и 122—123°) идентифицированы цис-каранон-4 (VII) и транс-каранон-4 (XXIV) (6) *. Как уже отмечалось (7), основную часть ацетатов непредельных спиртов, образующихся в данной реакции, составляет ацетат 1-метил-4-изопропенилбицикло[3.1.0]гексанола-2 (XV) (зона B); продукт фракции № 8 является индивидуальным (XV). Спектр п.м.р. ** его согласуется с принятой структурой: два мультиплета с δ 0,30 м.д.п. (1 H) и δ 0,72 м.д.п. (2 H) относятся к СН- и СН₂-группам циклопропанового кольца; два синглета с δ 1,18 и 1,67 м.д.п. соответствуют СН₃-группам у циклопропанового кольца и двойной связи. При омылении XV дал спирт XVI

Найдено %: С 78,96: Н 11,20 С₁₀Н₁₆О. Вычислено %: С 78,90: Н 11,59

образующий 3,5-динитробензоат с т. пл. $105,5-106^{\circ}$, $[\alpha]_{D}^{20}$ $\pm 52,5^{\circ}$ (С 7,1, бензол)

Найдено %: С 58,42; Н 5,37 $C_{17}H_{18}N_2O_6$. Вычислено %: С 58,95; Н 5,24

и α -нафтилуретан с т. пл. 120—121°, $[\alpha]_D^{20}$ +84,9° (С 3,1, бензол) Окисление спирта XVI по (8) дало кетон XVII.

Найдено %: С 80,09; Н 9,45 $C_{10}H_{14}O.$ Вычислено %: С 79,95; Н 9,39

2,4-динитрофенилгидразон, т. пл. 168,5-169°;

2-бензилиден-(XVII), т. пл. 112,5—113°, $[\alpha]_D^{20}$ +67,5° (C 6,5 бензол)

 ${
m Haйдено}\ \%:\ C\ 85,43;\ H\ 7,75\ {
m C}_{17}{
m H}_{18}{
m O}.\ {
m Bычислено}\ \%:\ C\ 85,67;\ H\ 7,61$

** Спектры п.м.р. снимались на спектрометре фирмы «Varian» Т-60.

^{*} Для соединений каранового ряда используется нумерация по номенклатуре IUPAC.

Ацетат XV — эпимер продукта дегидратации моноацетата транс-карантранс-диола-3,4 (9). Мы синтезировали соответствующий эпимерный спирт по этому методу и выделили его в индивидуальном состоянии омылением n-нитробензоата с т. пл. $86-87^{\circ}$: т. кип. $98-100^{\circ}/44$ мм, n_{D}^{20} 1,4876, d_{D}^{20} 0,9666, $\lceil \alpha \rceil_{D}^{20}$ +80,5°; 3,5-динитробензоат, т. пл. $96-97^{\circ}$

Найдено %: C 59,21; H 4,92; N 8,00 $C_{17}H_{18}N_2O_6$. Вычислено %: C 59,29; H 4,68; N 8,13

Окисление этого спирта по (8) дало тот же кетон XVII.

Фракция № 14 (зона C) содержит в основном ацетат цис-карен-3(10)-ола-4 (VIII) (и.-к. спектр: 895, 1050, 1250, 1660, 1750, 3070—3090 см⁻¹), поскольку в продуктах омыления ее идентифицирован цис-карен-3(10)-ол-4 (IX), 3,5-динитробензоат, т. пл. 129—131° [α] $_{D}^{20}$ —21,8° (C 2,0, бензол) не показал депрессии температуры плавления в смеси с аутентичным образцом (10). Из продуктов омыления фракции № 15 хроматографированием на силикагеле выделен спирт XIII, который при окислении по (8) дал карен-2-он-4 (2,4-динитрофенилгидразон, т. пл. 163—164°) (11). Следовательно, фракция № 15 (зона C) содержит ацетат цис-карен-2-ола-4 (XII). Поскольку он имеет одинаковое время удерживания с VIII, содержание его в реакционной смеси оценивалось по доли спирта в продуктах омыления.

Фракции № 19—21 (зона D) представляют собой, по данным г.ж.х. смесь по крайней мере трех диацетатов диолов $C_{14}H_{22}O_4$, которые не удалось разделить фракционированием. Многократным хроматографированием продуктов их омыления на силикагеле были выделены три изомерных диола $C_{10}H_{18}O_2$: 1) т. пл. 137°, 2) т. пл. 41,5—42° и 3) т. пл. 62—63°. Ранее мы нашли (12), что диолу с т. пл. 137°, образующемуся в качестве одного из продуктов гидратации β -3,4-эпоксикарана, ошибочно приписывалась (13) структура транс-каран-цис-диола-3,4 (XI) и установили для него структуру 1-метил-4-(α -оксиизопропил)-бицикло[3.1.0]гексанола-2 (XX). В спектре п.м.р. его имеются два мультиплета с δ 0,26 и 1,06 м.д.п. (1 и 2 н, CH- и CH₂-группы 3-членного цикла), синглет при δ 1,33 м.д.п. (9 н, три CH₃-группы), квадруплет с δ 4,40 м.д.п. (1 н, CH—O).

Впервые полученный в настоящей работе диол с т. пл. $41,5-42^{\circ}$ оказался транс-каран-цис-диолом-3,4 (XI) (14), что было подтверждено встречным синтезом. Диол с т. пл. $62-63^{\circ}$, [α]_{D^{20}} +23,1° (С 4,8, хлоро-

форм)

Найдено %: С 70,99; Н 10,26 С 10,18 Вычислено %: С 10,55; Н 10,66

в и-к. спектре обнаруживает полосы поглощения, характерные для трех-замещенных двойных связей и вторичных и третичных ОН-групп (810, 840, 900, 1070, 1147 и 1675 см⁻¹). В спектре и.м.р. отсутствуют сигналы протонов циклопропанового кольца и наблюдаются три трехпротонных синглета с δ 0,93; 1,05 и 1,20 м.д.п., относящиеся к СН₃-группам, одна из которых находится у С-атома, связанного с ОН-группой, квадруплет при δ 3,60 м.д.п. (1H, CH—O) и мультиплет при 5,26 м.д.п. (1H, HC—C). С 3,5-динитробензоилхлоридом диол образует два кристаллических эфира — моно-3,5-динитробензоат с т. пл. $104-106^{\circ}$ [α]_D²⁰ +64,5 $^{\circ}$ (C 3,4, хлороформ) и бис-3,5-динитробензоат, т. пл. $75-76^{\circ}$, [α]_D²⁰ — 29,1 $^{\circ}$ (C 6,0; бензол)

Найдено %: С 51,29; Н 4,19 С24 $\rm H_{22}N_4O_{12}.$ Вычислено %: С 51,61; Н 3,97

На основании данных и.-к. и п.м.р. спектроскопии диолу с т. пл. $62-63^{\circ}$ предположительно придается структура n-ментен-4-диола-1,2 (XXV).

Продукт	\mathbf{v}	VII	VIII	X *	x_{II}	$\mathbf{x}\mathbf{v}$	XVIII*	XIX	71XX	XXV
Содержание в смеси, %	1,5	5,7	2,5	31,5	1,8	11,8	2,3	36,9	1,7	2,5 **

Как видно из приведенного выше перечня продуктов, для превращений β-3,4-эпоксикарана под действием уксусного ангидрида характерны те же три направления, что и для α-изомера: 1) изомеризация в карбонильные соединения, 2) образование эфиров изомерных эпоксиду пепредельных спиртов и 3) присоединение уксусного ангидрида к эпоксиду. Как и в случае α-3,4-эпоксикарана, образование их можно объяспить, используя представления (¹⁵) о первоначальной атаке эпоксида ацилийноном, приводящей при раскрытии окисного цикла к карбокатиону III, и стабилизации последнего путем выталкивания H⁺ и Ас⁺ и электрофильной атакой среды. Оба пути сопровождаются перегруппировкой углеродной структуры исходного эпоксида: при изомеризации в карбонильные соединения имеет место сужение 6-членного цикла; структуры ацетата XV и диацетата XIX являются результатом перегруппировки с перемещением и изменением характера 3-членного цикла — персгруппировки каран → метилизопропилбициклогексан.

Следовательно, превращения стереоизомерных 3,4-эпоксикаранов под действием уксусного ангидрида различаются по типу перегруппировок. В случае α-3,4-эпоксикарана (4) наблюдается перегруппировка типа аллильной перегруппировки 1,3-дисновых систем; для β-3,4-эпоксикарана характерна перегруппировка каран → метилизопропилбициклогексан. Рассмотрение структур карановых соединений,которые в той или иной мере претерпевают эту перегруппировку (7, 16), позволяет сделать заключение, что условнем ее является β-ориентация (цис-положение относительно циклопропанового кольца) участвующей в реакции связи С₃—X. Кроме того, в отличие от α-изомера β-3,4-эпоксикарану свойственно цис-раскрытие окисного кольца в реакции электрофильного присоединения (17). Это свойство впервые наблюдалось именно на примере образования диацетата цис-дпола X в данной реакции.

Институт органической и физической химии им. А. Е. Арбузова Академии наук СССР Казапь Поступило 27 X 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Кисzynski, К. Магкс, Rocsn. Chem., 43, 943 (1969). ² Б. А. Арбузов, 3. Г. Исаева, Г. Ш. Бикбулатова, ДАН, 195, 559 (1970). ³ Б. А. Арбузов, 3. Г. Исаева, ЖОХ, 24, 1250 (1954). ⁴ Б. А. Арбузов, 3. Г. Исаева, И. П. Поводырева, ДАН, 159, 827 (1964). ³ З. Г. Исаева, Г. А. Бакалейник, ДАН, 176, 1310 (1967). ⁶ К. Gollnick, S. Schroeter et al., Ann., 687, 14 (1965). ⁷ З. Г. Исаева, В. А. Шайхутдинов, Б. А. Арбузов, Изв. АН СССР, сер. хим., 1968, 1151. ⁸ Н. S. Brown, Ch. P. Garg, J. Am. Chem. Soc., 83, 2952 (1964). ⁹ Р. J. Кгорр, J. Аm. Chem. Soc., 88, 4926 (1966). ¹⁰ Б. А. Арбузов, З. Г. Исаева, Г. Ш. Бикбулатова, Изв. АН СССР, сер. хим., 1968, 1925. ¹¹ З. Г. Исаева, Докторская диссертация, Казань, 1967, стр. 341. ¹² Б. А. Арбузов, В. А. Шайхутдинов, З. Г. Исаева, Изв. АН СССР, сер. хим., 1972, 2226. ¹³ L. Chabudzinski, H. Кисzynski, Roczn. Chem., 36, 1173 (1962). ¹⁴ Б. А. Арбузов, З. Г. Исаева, Т. Ш. Бикбулатова, Изв. АН СССР, сер. хим., 1972, 1680. ¹⁵ А. Rosovsky, Heterocyclic Compounds with Three and Fourmembered Rings, Part 1, N. Y., 1964, p. 230. ¹⁶ Б. А. Арбузов, З. Г. Исаева, Г. Ш. Бикбулатова, Изв. АН СССР, сер. хим., 1972, 388. ¹⁷ З. Г. Исаева, Э. Х. Казакова, Р. Р. Дьяконова, Сборник по некоторым проблемам органической и физической химии, Казань, 1972, стр. 40.

^{*} Аутентичные образцы синтезированы адетилированием соответствующих диолов.

^{** 1,8%} составляют неидентифицированные пять продуктов.