Доклады Академии наук СССР 1973. Том 210, № 2

УДК 546.02+553.981

ГЕОЛОГИЯ

в. с. вышемирский, е. ф. доильницын, а. п. перцева изотопный состав углерода автохтонных и аллохтонных битумоилов

(Представлено академиком А. А. Трофимуком 29 III 1972)

Общий характер изменения состава органического вещества в генетическом ряду кероген — автохтонный битумоид — аллохтонный битумоид — нефть заключается, как известно, в образовании и относительном накоплении легких углеводородных молекул. При этом содержания углерода и водорода постепенио возрастают, а гетероэлементов (кислород, азот, сера) — уменьшаются, хотя при формировании состава разных членов генетического ряда преобладают разные процессы.

Состав автохтонного битумоида формируется в ходе образования его из небитуминозных компонентов органического вещества и отчасти за счет углеводородов, унаследованных от живых организмов. На составе аллохтонного битумоида отражается, кроме того, процесс фракционирования компонентов битумоида при первичной миграции, а на составе нефти — еще и при вторичной миграции. Естественно ожидать, что все эти процессы сопровождаются также и изотопным фракционированием углерода.

Особый интерес представляют изотопные отношения углерода в битумоидах, занимающих в генетическом ряду промежуточное положение между исходным органическим веществом и нефтью. Авторами исследовано 62 образца битумоида, извлеченного хлороформом из палеозойских, юрских и нижнемеловых пород Западно-Сибирской низменности и из нижнекембрийских пород Иркутского амфитеатра, 70 проб нефтей из тех же отложений, а также несколько проб керогена, любезно предоставленных нам Г. М. Парпаровой и Д. И. Дроботом, и углей. Диагностика преимущественно автохтонных и преимущественно автохтонных и преимущественно аллохтонных битумоидов проведена по общепринятому комплексу геохимических показателей: коэффицеенту битумоидности (1), элементарному и групповому составу (2).

Изотопные отношения углерода измерялись Е. Ф. Доильницыным и А. П. Перцевой на масс-спектрометре МИ-1301 компенсационным методом. В качестве лабораторного стандарта использовалось диффузионное масло с $\delta C^{13} = -2,50\%$. Результаты определений пересчитаны на международный стандарт PDB. Точность определений δC^{13} составляет $\pm 0,05\%$, а точ-

ность привязки к международному стандарту $\pm 0.1\%$.

Как видно по средним данным, приведенным в табл. 1, а также по конкретным значениям δC^{13} , изотопный состав углерода битумоидов зависит не только от фаций отложений, что отмечалось раньше по небольшому количеству проб (³, ⁴), но и от генетических типов битумоидов. При этом вторая зависимость выражена даже более ярко, чем первая. При одинаковых фациях углерод у преимущественно автохтонных битумоидов на 0.50-0.70% тяжелее, чем у преимущественно аллохтонных, тогда как у каждого типа битумоидов различия в фациях в приведенных примерах изменяют δC^{13} только на 0.2-0.3%.

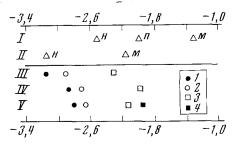
Совершенно очевидно, что если бы удалось выделить в чистом виде аллохтонные и автохтонные (особенно остаточные) битумоиды, то разница между ними по δC^{13} была бы еще больше. Впрочем, в широком диапазоне фаций у однотипного битумонда тоже могут быть значительные вариации

Средние данные по изотопному составу углерода органических веществ (о.в.), исследованных авторами

	Возраст	Преобладающие фации накопления о.в. и тины углей	Степень углефи- кации о.в.	δC13, %				Разность знач. 8С13			мигра-
Район				кероген	автохтонный битумоид	аллохтонпый битумоид	нефть	между керо- геном и ав- тохт. битум.	между ав- тохт. и ал- лохт. битум.	между ал- лохт. битум. и нефтью	Масшабы миі ции, %
Юг Западно-Си- бирской низ-	$D - C$ J_{1-2}		r r		-1,99 -2,31	-2,71 $-2,90$	-2,87 $-3,16$	=	0,73 0,59	0,16 0,26	82 69
менности Центральная часть Западно- Сибирской низ-	Cr ₁	Морские и пре- сноводные	д-г	-	-	-2,67	-2,91		-	0,24	_
менности Ирк у тский амфи-	Cm ₁	Морские и лагун-	Г-Ж	-1,95	-2,13	-2,66	-2,80	0,18	0,53	0,14	79
театр Мин у синская	C ₂	ные Сапропелево-г у-	ľ	-2,63	-2,76	-	_	0,13	-	-	_
впадина Кузбасс	P ₂	мусовый уголь Витринитовый уголь	Г	-2,78	-2,81	_	_	0,03	-	-	

изотопного состава углерода. Например, у сингенетичного битумоида из готерив-барремских глин δC^{13} изменяется от -3.15% в красноцветной континентальной толще на крайнем юге Западно-Сибирской низменности до -2.64% на Усть-Балыкском месторождении, т. е. в зоне развития сероцветных мелководно-морских отложений готерив-баррема. Однако в той области, по какой составлена табл. 1, изменения фаций готерив-баррема менее резкие. И здесь δC^{13} у автохтонных битумоидов колеблется от -2.89 до -2.64% (Мыльджинское, Соснинско-Советское и Усть-Балыкское месторождения).

В пределах мощных толщ, выраженных комплексами родственных фаций, интервалы колебаний δC^{13} у аллохтонных и автохтонных битумоидов не перекрываются ни в одном случае, чего нельзя сказать о других геохимических параметрах, используемых для диагностики генетических типов битумоидов. По-видимому, изотопный состав углерода может занять важное место в комплексе признаков автохтонных и аллохтонных битумоидов.


Величина δC^{13} хорошо коррелирует с коэффициентом битумоидности (коэффициенты корреляции от -0.42 до -0.95), значительно хуже — с содержанием гетероэлементов (слабая положительная связь) и совсем слабо — с содержаниями масел и асфальтенов. Очевидно, это объясняется меньшей точностью определения элементарного и особенно группового состава битумоидов по сравнению с содержанием $C_{\rm opr}$ и выходом битумоида. Вместе с тем неполнота извлечения битумоида из породы и разнообразные вторичные изменения его, возможно, в большей мере искажают состав битумоида, чем его содержание в породе и изотопные отношения углерода. Это дает основание при диагностике генетических типов битумоидов и оценке масштабов эмиграции битумоидов из материнских пород отдавать предпочтение коэффициенту битумоидности и изотопному составу углерода, особенно при небольшом числе проб.

Если принять, что в первичной миграции участвует битумоид с изотопным составом углерода, характерным для нефти, то масштабы миграции можно оценить по формуле

$$q = (C_{\text{авт}}^{13} - C_{\text{алл}}^{13})/(C_{\text{авт}}^{13} - C_{\text{H}}^{13}) \ (\%),$$

где q — доля мигрировавшего битумоида в объеме преимущественно аллохтонного битумоида, содержащегося в проницаемых породах; $C_{\rm авт}^{13}$ — содержание тяжелого углерода в автохтонном битумоиде; $C_{\rm алл}^{13}$ — то же в аллохтонном битумоиде; $C_{\rm r}^{13}$ — то же в нефти.

Рис. 1. δC^{13} органических веществ. I — растения $\binom{5}{2}$ (n — наземные, n — пресноводные, m — морские); II — липидные фракции растений $\binom{6}{2}$; III - V — нефть $\binom{1}{2}$, аллохтопный битумонд $\binom{2}{2}$; автохтонный битумонд $\binom{3}{2}$ и кероген $\binom{4}{2}$: III — I_{1-2} Западной Сибири, IV — D — С Западной Сибири, V — Ст₁ Иркутского амфитеатра

Для палеозойских отложений юга Западной Сибири масштабы первичной миграции определены по этой формуле как 82%, что практически совпадает с данными, полученными по другим параметрам, для юрских отложений того же района (69%) и для нижнего кембрия Иркутского амфитеатра (79%). Приведенные результаты несколько занижены за счет того, что в первичной миграции участвует битумоид, очевидно более тяжелый, чем нефть.

В последующем, по-видимому, можно будет выделить в чистом виде исходный и миграционный битумонды, что позволит не только более точно рассчитывать масштабы первичной миграции, но и оценивать масштабы эмиграции битумонда из проницаемых пород в процессе вторичной миграции и формирования залежей нефти, например, по такой формуле:

$$Q = [qC_{\rm M}^{13} + (100 - q)C_{\rm Hex}^{13} - 100C_{\rm Hp}^{13}]/C_{\rm H}^{13} (\%),$$

где Q — отношение битумоида, эмигрировавшего из проницаемых пород, к битумоиду, сохранившемуся в них (эта величина может быть и больше 100%); q — доля миграционного битумоида в проницаемых породах; $C_{\rm M}^{13}$ — содержание тяжелого углерода в миграционном битумоиде, эмигрировавшем из непроницаемых пород в проницаемые; $C_{\rm ucx}^{13}$ — то же в исходном битумоиде проницаемых пород; $C_{\rm np}^{13}$ — то же в суммарном битумоиде проницаемых пород; $C_{\rm n}^{13}$ — то же в нефти.

Вполпе очевидно, что величина Q представляет больший интерес для оценки прогнозных запасов нефти объемно-генетическим методом, чем величина q или процент битумоидов, эмигрировавших из непроницаемых пород (2). Величину Q можно рассчитать и по другим геохимическим параметрам, например по элементарному или групповому составу битумоидов и нефтей, но, скорее всего, с меньшей точностью.

Как видно из табл. 1 и рис. 1, длительный и многостадийный процесс нефтеобразования сопровождается интенсивным изотопным фракционированием углерода. Еще на стадии диагенеза, т. е. до начала массового новообразования нефтяных углеводородов, захороненное в осадках рассеянное органическое вещество значительно обогащается легким углеродом, тогда как гомогенное органическое вещество в этом отношении остается неизмененным (5, 7).

В последующем, при новообразовании битумоидов в зоне катагенеза изотопное фракционирование углерода продолжается в том же направлении. В гомогенном гумусовом органическом веществе облегчение углерода автохтонного битумоида выражено очень слабо, в пределах возможной ошибки определения; в гомогенном сапропелево-гумусовом — вполне ясно, а в рассеянном сапропелевом — еще сильнее. Кроме того, рассеянное органическое вещество продуцирует также и аллохтонный битумоид с очень легким углеродом. В заключительной стадии процесса нефтеобразования при формировании залежей за счет вторичной миграции аллохтонного битумоида облегчение углерода завершается.

У керогена δC^{13} только на 0.18% больше, чем у автохтонного битумоида, а у нефтей — только на 0.16-0.26% меньше, чем у аллохтонного битумоида, тогда как между этими типами битумоидов разница в δC^{13} состав-

ляет 0,53—0,73%. Следовательно, облегчение углерода нефтей по сравнению с рассеянным органическим веществом происходит на всех стадиях нефтеобразования, но наиболее интенсивно— в ходе первичной миграции. Это заключение согласуется с тем, что аллохтонные битумоиды по элементарному составу обычно в большей мерс отличаются от автохтонных битумоидов, чем от нефтей. Таким образом, первичная миграция, т. е. переход от автохтонного битумоида к аллохтонному, является решающим этапом в формировании изотопного состава углерода нефтей и вообще химическото состава последних.

Институт геологии и геофизики Сибирского отделения Академии паук СССР Новосибирск Поступило 22 III 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Б. Вассоевич, Тр. Всесоюзн. нефт. п.-и. геол.-разв. инст., в. 128 (1958). ² С. Г. Неручев, Нефтепроизводящие свиты и миграция нефти, 1969. ³ S. R. Silverman. S. Epstein, Bull. Am. Assoc. Petr. Geol., 42, № 5 (1958). ⁴ В. С. Вышемирский, Е. Ф. Доильницын, А. П. Перцева, ДАН, 194, № 2 (1970). ⁵ К. Rankama, Progress in Isotope Geology, N.Y.— London, 1963. ⁶ С. Р. Силвермэн, Органическая геохимия, в. 1 (1967). ⁷ В. С. Вышемирский, Е. Ф. Доильницын, В. П. Шорин, ДАН, 183, № 5 (1968). ⁸ W. R. Ескеlmann et al., Bul. Am. Assoc. Petr. Geol., 46, № 5 (1962).