УДК 517.528

MATEMATUKA

П. В. ПЕЧЕРСКИЙ

О ПЕРЕСТАНОВКАХ ЧЛЕНОВ В ФУНКЦИОНАЛЬНЫХ РЯДАХ

(Представлено академиком А. Н. Тихоновым 30 VI 1972)

Пусть

$$\sum_{k=1}^{\infty} u_k \tag{1}$$

некоторый ряд из элементов того или другого пространства, A — какойнибудь метод суммирования. Множество всех значений, к которым ряд (1) сходится (суммируется методом A) в том или другом смысле при всевозможных перестановках членов ряда, называется областью сумм (областью A-сумм) ряда (1).

В настоящей заметке рассматриваются области сумм рядов в конечномерных пространствах, пространствах L_p и рядов из измеримых функций, а также области A-сумм этих рядов для полунепрерывных методов Перрона A (см. (1)).

В дальнейшем символом E будет обозначаться n-мерное эвклидово пространство E^n или пространство $L_p[0,1]$. Первый случай будет выделяться записью $E=E^n$, второй случай $-E=L_p$.

Определение 1. Пусть (1) — ряд из векторов E. Множество всех векторов $s \subseteq E$, к которым ряд (1) сходится в метрике E (слабо сходится) при всевозможных перестановках членов ряда, называется с ильной (соответственно с лабой) областью сумм ряда (1). (Определение слабой сходимости дано в (2), стр. 182.)

Tеорема 1. Hусть (1)-ряд из векторов E, удовлетворяющий условиям

$$\lim_{k \to \infty} \|u_k\| = 0, \text{ koed i } E = E^n,$$

$$\sum_{k=1}^{\infty} \|u_k\|^2 < \infty, \text{ koed i } E = L_p, p \geqslant 2,$$

$$\sum_{k=1}^{\infty} \|u_k\|^p < \infty, \text{ koed i } E = L_p, 1 < p < 2.$$
(2)

(Условия (2) впервые сформулированы в (3).)

Тогда, для того чтобы вектор $s \in E$ принадлежал сильной области сумм ряда (1), необходимо и достаточно, чтобы для любого функционала $F(y) \in E^*$ величина F(s) принадлежала области сумм ряда

$$\sum_{k=1}^{\infty} F(u_k). \tag{3}$$

При доказательстве теоремы 1 используется следующая комбинаторная Π е м м а. Π усть Σ — конечное кольцо множеств *, u(T) — $a\partial \partial u$ тивная функция множеств, определенная на Σ и принимающая значения в линей-

^{*} Определение кольца множеств дано в (2), стр. 38.

ном нормированном пространстве W, ε — произвольное неотрицательное число, $\varepsilon \geqslant 0$.

Тогда, если u(T) обладает тем свойством, что для любого множества $A \subseteq \Sigma$ существует множество $B \subseteq \Sigma$, $B \subseteq A$, такое, что

$$||u(B) - {}^{\scriptscriptstyle 1}/_{\scriptscriptstyle 2}u(A)|| \leq \varepsilon,$$

то множество U всех значений функции u(T) на Σ образует 2ε -сеть своей выпуклой оболочки G(U).

Как следствия из теоремы 1 получаются следующие теоремы.

Теорема 2. Если ряд (1) из векторов E удовлетворяет условиям (2), то сильная и слабая области сумм этого ряда совпадают.

Теорема 3. $\mathit{Hycrb}\ \mathit{psd}\$ (1) из векторов $\mathit{E}\ \mathit{ydosnersopser}\ \mathit{ycno-}$

виям (2).

 $Tor\partial a$, для того чтобы сильной областью сумм ряда (1) было всё E, необходимо и достаточно, чтобы для любого функционала $F(y) \in E^*$, $\|F\| = 1$, областью сумм ряда (3) была вся действительная прямая.

В случае, когда $E = E^n$, теорема 3 была доказана Е. Штейницем (4).

Определение 2. Пусть $\Phi = \{\varphi_h(t)\}_1^{\infty}$ — последовательность вещественно-значных функций, определенных на полушитервале [0,1).

Мы будем говорить, что ряд (1) суммируется методом Φ к вектору $s \in E$ в метрике E, если при любом $t \in [0,1)$ ряд

$$\sum_{k=1}^{\infty} \varphi_k(t) u_k$$

сходится в метрике E к некоторому вектору $v(t) \in E$ и $\lim_{t \to 1-0} v(t) = s$ в метрике E.

Определение 3. Мы будем говорить, что ряд (1) слабо суммируется методом Φ к вектору $s \in E$, если для любого функциона-

ла $F(y) \in E^*$ ряд (3) суммируется методом Φ к числу F(s).

Определение 4. Множество всех векторов $s \in E$, к которым ряд (1) суммируется методом Φ в метрике E (слабо суммируется методом Φ) при всевозможных перестановках членов ряда, называется сильной (соответственно слабой) областью Φ -сумм ряда (1).

виям (2).

Тогда, если метод суммирования Φ вполне регулярен для рядов с действенными членами, то сильная и слабая области Φ -сумм ряда (1) совпадают с сильной областью сумм этого ряда.

Определение 5. Пусть

$$\sum_{k=1}^{\infty} f_k(x) \tag{4}$$

— ряд из измеримых действительных функций, $x \in [0, 1]$, $\Phi = \{\varphi_k(t)\}_1^{\infty}$ — метод суммирования. Множество всех функций P(x), конечных почти всюду на [0, 1], к которым ряд (4) сходится (суммируется методом Φ) почти всюду на [0, 1] при всевозможных перестановках членов ряда, называется областью сумм ряда (4) в смысле сходимости почти всюду (областью Φ -сумм ряда (4) в смысле суммируемости почти всюду).

Tеорема 5. Hycrb (4) — psd из измеримых функций, удовлетворяю-

щий условию

$$\sum_{k=1}^{\infty} f^2(x) < \infty \ n. \, e. \, ha \ [0, 1]. \tag{5}$$

Тогда для любого вполне регулярного метода суммирования Φ область Φ -сумм ряда (4) в смысле суммируемости почти всюду совпадает с областью сумм этого ряда в смысле сходимости почти всюду.

Теорема 5 является некоторым обобщением одной из теорем Е. М. Ни-

кишина (см. (5)).

Условие полной регулярности метода Ф в теоремах 4 и 5 нельзя заменить условием простой регулярности.

Действительно, члены ряда

$$\sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \frac{1}{k} \tag{6}$$

принадлежат $L_2[0,1]$ и удовлетворяют условиям (2) и (5).

Как непосредственно видно, область сумм ряда (6) есть пустое множество. В то же время, как известно, для любого действительного *s* существует регулярный метод Ф. суммирующий ряд (6) к *s* (см. (6)).

В заключение мие хотелось бы поблагодарить чл.-корр. АН СССР

Л. Е. Меньшова за многочисленные обсуждения этих результатов.

Математический институт им. В. А. Стеклова Академии наук СССР Москва Поступило 22 VI 1972

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. Реггоп, Zur Theorie der divergenten Reihen, 6 (1920). ² А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, «Наука», 1972. ³ М. И. Кадец, УМН, 9, в. 1 (1954). ⁴ Е. Steinitz, J. reine u. angew. Math., 143 (1913); 144 (1914); 146 (1916). ⁵ Е. М. Никишин, Матем. заметки, 1, 2 (1967). ⁶ В. М. Даревский, Матем. сборн., 7 (49) (1940).