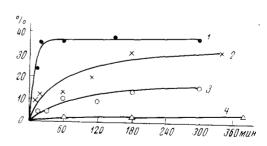
УДК 542.952.643:543.422.25

ХИМИЯ

Л. С. БРЕСЛЕР, И. Я. ПОДДУБНЫЙ, Т. К. СМИРНОВА, А. С. ХАЧАТУРОВ, И. Ю. ЦЕРЕТЕЛИ

ПЗУЧЕНИЕ МЕТОДОМ Я.М.Р. СТРОЕНИЯ КОМПЛЕКСОВ, ОБРАЗУЮЩИХСЯ ПРИ ВЗАИМОДЕЙСТВИИ ТРИМЕТИЛАЛЮМИНИЯ С ТРЕТИЧНОБУТИЛТИТАНАТОМ


(Представлено академиком Б. А. Долгоплоском 15 XII 1972)

Гомогенные катализаторы типа Циглера — Натта на основе алкоголятов титана и алкилов алюминия инициируют полимеризацию различных мономеров — ацетилена (¹), этилена (²), бутадиена (³, ²) и т. д. Многочисленные исследования спектров э.п.р. реагирующей системы ${\rm Ti}(OR)_4+AlR_3$ ($^{5-8}$) указывают на частичное восстановление титаната с образованием комилексов ${\rm Ti}^{2+}$ различного состава.

В настоящей работе была поставлена задача определить основные продукты взаимодействия алкилтитанатов с алкилами алюминия методом я.м.р. Поскольку присутствие парамагнитных комплексов значительно усложняет интерпретацию спектров я.м.р. (9), следовало спачала исследовать систему, где восстановления титаната не происходит.

Определение содержания трехвалентного титана методом окислительно-восстановительного титрования показало, что в зависимости от природы алкила алюминия и титаната в реагирующей системе достигается различная глубина восстановления титаната (рис. 1). Третичнобутилтитанат восстанавливается триметилалюминием на 3,2% при молярном соотношении A1/Ti=2 и на 6,3% при A1/Ti=4. Все образующиеся при этом производные трехвалентного титана нарамагнитны, так как содержание нарамагнитных частиц по спектру э.п.р. (3%) ко всему количеству титана при A1/Ti=2) соответствует данным титрования Ti^{3+} . Спектры э.п.р. реагирующей системы $A1(CH_3)_3+Ti[OC(CH_3)_3]_4$ приведены на рис. 2. При эквимолярных количествах компонентов, а также при избытке титаната восстановления не происходит. На это указывает отсутствие сигнала э.п.р. и отрицательный результат анализа на Ti^{3+} . Именно взаимодействие триметилалюминия с избытком или эквимолярным количеством третичнобутилтитаната рассматривается в настоящей работе.

Рис. 1. Восстаповление титанатов альплами алюминия. По оси ординат — доля трехвалентного титана относительно всего титана в системе. I-3 — восстановление $\mathrm{Ti}(O-\mathit{n}-C_4\mathrm{H}_9)_4$ триэтилалюминием в гептане при $20^{\circ}\,\mathrm{C}$; $[\mathrm{Ti}] = 2,2\cdot 10^{-2}\,\mathrm{mon}//\mathrm{л}$; $\mathrm{AI}/\mathrm{Ti} = 10,5\,\mathrm{n}$ 1,6 соответствение; 4 — восстановление третичнобутилтитаната триметилалюминием в толуоле, $[\mathrm{Ti}] = 0,25\,\mathrm{mon}/\mathrm{n}$; $\mathrm{AI}/\mathrm{Ti} = 0,25\,\mathrm{mon}/\mathrm{n}$;

Реакция проводилась непосредственно в ампулах для измерений я.м.р. Спектры протонного магнитного резонанса снимались на спектрометрах JNM-3H-60 на частоте 60 Мгц и Bruker Spectrospin-HX-90 на частоте 90 Мгц. Спектры я.м.р. на ядрах дейтерия регистрировались на спектрометре Bruker Spectrospin-HX-90 при частоте 13,81 Мгц. Химические сдвиги отсчитывались от внутреннего стандарта (растворителя)—

сигнала метильной группы толуола (τ 7.68 м.д. (10)), метокспгруппы диметокснэтана (τ 6,63 м.д. (10)) и в дейтериевых спектрах от линии дейтеронов бензольного ядра, положение которой было условно принято за τ 2,63 м.д. Как правило, положение линий в дейтериевом и протонном спектрах совпадает с точностью до 0,1 м.д. (11).

Для облегчения анализа спектров реагирующей системы были сняты спектры я.м.р. возможных продуктов перераспределения заместителей между третичнобутилтитанатом и триметилалюминием, приготовленных из соответствующих метильных производных и алкоголятов титана и

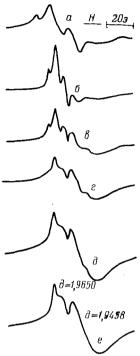


Рис. 2. Изменение спектра э.п.р. в процессе взаимоцействия толуольных растворов триметилалюминия и третичнобутилтитаната при A1/Ti=2: a- при -78° , время взаимодействия 30 мин.; b- комнатная температура, продолжительность реакции 1 час; b- через сутки, b- через b- через

алюминия (12). Поскольку тетраметилтитан получается в виде эфирата (13), от которого невозможно отделить эфир (14), метил- третичнобутокси-производные приготовлялись путем смешения раствора Ti(CD₃)₄ в н-гексане-H₁₄ и этиловом эфире- H_{10} (10:1(мол.)) и Ti[OC(CH₃)₃]₄. и я.м.р. поглощение метильных групп регистрировалось на ядрах дейтерия (рис. 3). В то время как резонансы метильных пейтеронов для $TiMe_3[OC(CH_3)_3]$ и $TiMe[OC(CH_3)_3]_3$ представляют собой синглеты, закономерно смешающиеся в сильное поле по мере замещения метильных групп на алкоксильные, в дейтериевом спектре продукта взаимодействия эквимоколичеств хынавк тетраметилтитана-D₁₂ Ti[OC(CH₃)₃]₄ наблюдаются три линии метильных групп. По-видимому, здесь образуется не индивидуальное соединение, а смесь комплексов различного состава. На это указывает также наличие трех пиков третичнобутоксигруппы в протонном спектре продукта взаимодействия Ti(CH)₄ n Ti[OC(CH₃)₃]₄ при соотношении 1:1 (мол.) в диметоксиэтане (рис. 4). Соответственно при соотношении 1:3 образуется соединение, протонный спектр которого в растворе диметоксиэтана состоит из двух синглетов: при т 8.61 (третичнобутоксигруппа) и т 9,41 м.д. (CH_3) с относительными интенсивностями 9:1. Линия метильных дейтеронов TiCD₃ (OR)₃ (рис. 3) также расположена при т 9,40 м.д. Сигнал третичнобутоксигруппы в титанате, растворенном в диметоксиэтане, наблюдается при 8,63 м.д. Спектр п.м.р. для триметил-третичнобутоксититаната (растворитель — диметоксиэтан) представляет собой два узких синглета при т 8,66 (OR) и τ 8,67 м.д. (CH₃).

Протонные спектры продуктов взаимодействия димеров триметилалюминия и третичнобутилата алюминия в толуольном растворе приведены в табл. 1. Как показывают наши данные, в триметилалюминии обменивается лишь одна метильная группа с образованием димерного (15) третичнобутоксида диметилалюминия; избыток третичнобутилата алюмпния не реагирует с этим соединением, и обмен третичнобутоксигруппами не обнаруживается даже при повышенной температуре (нет уширения линий третичнобутоксигрупп ни в спектре димера третичнобутилата алюминия, ни в спектре его смеси с диметилтретичнобутоксиалюминием вплоть до 98°).

Продукты реакции триметилалюминия с эквимолярным количеством или избытком третичнобутилтитаната в растворе толуола дают спектр п.м.р., состоящий из четырех узких линий при т 8,50; 8,63; 9,05 и 10,40 м.д.

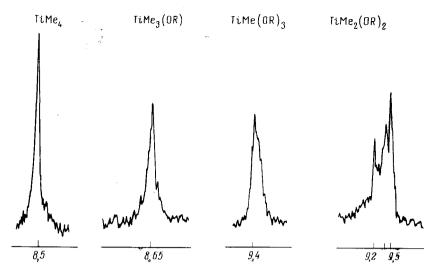


Рис. 3. Спектры дейтериевого резонанса 'Гі (CD₃) $_n$ [OC(CH₃) $_3$] $_{4-n}$ ($n\leqslant 4$) при —30° С в смеси гексана-H₁₄ и этилового эфира-H₁₀ [Ti] = 0,2 мол/л

(табл. 2). Резонанс при т 8,50 м.д. относится к третичнобутоксигруппе при титане (интенсивность линии возрастает с увеличением количества титаната). Сигналы при т 8,63 и 10,40 м.д. с отношением интенсивностей 3:2 соответствуют третичнобутоксигруппам и метилам димера третичнобутоксиалюминия (см. табл. 1). Тогда пик при т 9,05 м.д., интенсивность

Таблица 1 Спектры п.м.р. метилтретичнобутилатов алюминия в растворе толуола

Реагир ующие вещества	T-pa, °C		Химичес	кие сдл	зиги τ, 1	м.д.		
		протоны третично- бутоксигрупп			СН ₃ мос- тичн.	СН ₃ конц.	Соотношение интенсивнос- тей линий	Структура соединений
Al ₂ (CH ₃) ₆	20	_	_		10	.17		CH ₃ CH ₃ CH ₃
-	78		-		9,68	[10,34]		CH ₃ CH ₃ CH ₃
Al ₂ (OR) ₆	98	8,28	8,46		_		$\begin{array}{c} 1:2 \\ 1:2 \end{array}$	RO OR OR
	26	8,30	8,45					Al Al
2Al ₂ (CH ₃) ₆ +	78			8,61		10,41	1,7:1	RO OR OR CH ₃
$+ \text{Al}_2(OR)_6$	26	_	_	8,65		10,35	1,1.1	Al
$Al_2(CH_3)_6+ 2Al_2(OR)_6$	98	8,30	8,49	2 61		40.74		CH ₃ OR CH ₃
2A12(OA)6	26	8,30	8,46	8,61 8,61	_	10,41 $10,40$	 2,8:5,6:1,5:1	Al ₂ (OR) ₆ , Al ₂ (CH ₃) ₄ (OR) ₂

Таблица 2 Спектры п.м.р. продуктов взаимодействия триметилалюминия и третичнобутилтитаната в растворе толуола при 20° С

_	Хим		сдвиги		ни			
Реагирующие вещества	OC(CH ₃) ₃		CH ₃		пение	Структура продуктов реакции		
	при Ті	при Al	при Ті	при Al	Соотношение тенсивностей линий			
Ti(OR) ₄ 2Ti(OR) ₄ + Al(CH ₃) ₃	8,49 8,51	8,64	9,05	10,40	2 2 :3:2:2	AI TICH3(OR)3TI(OR)4		
3Ti(OR) ₄ + 2Al(CH ₃) ₃ Ti(OR) ₄ + Al(CH ₃) ₃	8,50 8,50	8,61 8,63	9,05 9,02	10,44 10,36	13:3:1:2 9:3:1:2	CH ₃		

которого составляет половину от интенсивности метильного резонанса алкоголята диметилалюминия, естественно приписать метильной группе при титане в $TiCH_3[OC(CH_3)_3]_3$, образовавшемся в результате реакции обмена:

Лиметилтретичнобутоксиалюминий не обменивается метильными группами с третичнобутилтитанатом. Действительно, соотношение интенсивностей сигналов при т 8,63 и 9,05 м.д. практически во всех случаях равно З: 1, что соответствует эквивалентным количествам третичнобутоксигрупп

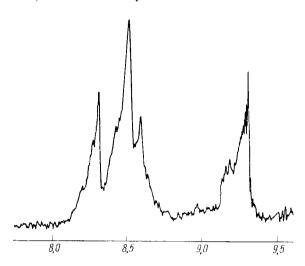


Рис. 4. Спектр протонного резонанса Ti(CH₃)₂. $\cdot [OC(CH_3)_3]_2$ в диметоксиэтане при -10° С [Ti] = = 0.9 мол/л

при алюминии и метильных групп при титане. В спектре смеси растворов третичнобутилтитаната диметилтретичнобутоксида алюминия не наблюдается резопансная линия т 9,05 м.д., т. е. реакция не идет. Изменение положения резонанса CH₃ — Ti (9.05 м.д. по сравнению с 9.40 м.л. в модельном соединении), по-видимому, связано с тем, что образование комплексов с этиловым эфиром или диметоксиэтаном приводит к смещению линии метильной группы в сильное

Следует отметить, что спектр продуктов реакции эквимолярных количеств

триметилалюминия и третичнобутилтитапата не изменяется при нагревании образца до 75°; таким образом, метил-три-(третичнобутокси)-титан стабилен в толуольном растворе до этой температуры. Вероятно, восстановление с отщеплением метапа происходит внутримолекулярио в двукратио метилированных производных титана, которые могут образоваться лишь в присутствии избытка триметилалюминия.

Всесоюзный научно-исследовательский институт синтетического каучука им. С. В. Лебедева Лепинград

Поступило 15 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. V. Nicolescu, Em. Angelescu, J. Polym. Sci. A, 3, 1227 (1965).

² C. E. H. Bawn, R. Symcox, J. Polym. Sci., 34, 139 (1959).

³ D. H. Dawes, S. A. Winkler, J. Polym. Sci. A, 2, 3029 (1964).

⁴ G. Natta, L. Porri et al., Makromol. Chem., 77, 114, 126 (1964).

⁵ T. C. Джабиев, Р. Д. Сабирова, А. Е. Шилов, Кинетика и катализ, 5, 441 (1964).

⁶ K. Hiraki et al., Shokubai, 9, Special, 25 (1967). Сhem., 77, 114, 126 (1964). ⁵ Т. С. Джаонев, 1. Д. Састрован, 25 (1967). Кипетика и катализ, 5, 441 (1964). ⁶ К. Нігакісt al., Shokubai, 9, Special, 25 (1967). ⁷ М. Такеda et al., J. Polym. Sci. C, 23, 741 (1968). ⁸ Н. Нігаі et al., J. Polym. Sci. A 1, 8, 147 (1970). ⁹ Д. Р. Итон, В. Д. Филлипс, ЖСХ, 9, 153 (1968). ¹⁰ Н. Suhr, Anwendungen der kernmagnetischen Resonanz in der organischen Chemie, Berlin, 1965. ¹¹ Р. Diehl, Th. Leipert, Helv. chim. acta, 47, 545 (1964). ¹² Г. В. Зенина, Н. И. Шевердина, К. А. Кочешков, ДАН, 201, 1363 (1971). ¹³ Н. Ј. Ветthold, G. Groh, Zs. anorg. u. allgem. Chem., 319, 230 (1963). ¹⁴ J. F. Hanlan, I. D. McCowan. Canad. J. Chem., 50, 747 (1972). ¹⁵ E. G. Hoffmann, E. Tornau, Angew. Chem., 73, 578 (1961).