УДК 541.124/128

ФИЗИЧЕСКАЯ ХИМИЯ

В. Г. ВОРОНКОВ , А. А. ПАВЛОВ, А. С. РОЗЕНБЕРГ

ТЕРМИЧЕСКОЕ ВОСПЛАМЕНЕНИЕ ПАРОВ АЗОТИСТОВОДОРОДНОЙ КИСЛОТЫ

(Представлено академиком Н. М. Эмануэлем 5 І 1973)

Изучение кипетики и механизма распада азотистоводородной кислоты представляет интерес в связи с поисками систем для и.-к. химических дазеров (1). Одпако, несмотря на весьма значительное количество работ, посвященных распаду HN_3 , в настоящее время ист единого мпения о природе взрывного распада HN₃ (2). Нами проведено изучение термического воспламенения паров $\mathrm{HN}_{\scriptscriptstyle 3}$ в цилипдрическом кварцевом сосуде (S/V= = 2 см⁻¹) методом впуска в интервале температур 300-840° С при давлениях $30-10^{-2}$ тор. При впуске паров в нагретый сосуд (выше 300°) наблюдается свечение, характер которого зависит от давления ее паров. Существуют критические давления НN₃, выше которых наблюдается яркая короткая вепышка, пламя при этом всегда распространяется по находящимся при компатной температуре коммуникациям, вплоть до капилляров с впутренним диаметром 0,5 мм. При давлениях ниже этого предела с длительностью в десятки минут различается слабое свечение, которое можно наблюдать и при давлениях порядка 10^{-2} тор. Яркость этого свечения с ростом температуры увеличивается, а длительность падает до долей секунды.

Грапица между этими двумя явлениями, как и в (²), отнесена нами к пределу самовоспламенения и воспроизводимо определена до 840° с точностью \pm 0,5 тор. Полученная предельная кривая приведена на рис. 4 в координатах $P_{\text{HN}_3}^{\ 0}-T$, где $P_{\text{HN}_3}^{\ 0}$ - начальное давление кислоты, T — температура стенок реакционного сосуда. На этом же рисунке приведены результаты исследования (²), полученные в сходных условиях (в (²) применен сосуд с S/V=0.6 см $^{-1}$), а также представлена зависимость величины $\lg P_{\text{HN}_3}^{\ 0}/T$ от обратной температуры. В этих координатах ветвь AB предела термического самовоспламенения можно описать уравнением $\lg P_{\text{HN}_3}^{\ 0}/T=3400/T-5.7$.

Такого вида границы самовоспламенения (рис. 1) для индивидуальных взрывчатых веществ обнаружены впервые, хотя они известны для горения кислородных смесей углеводородов различных классов (3). Наблюдая за скоростью разложения HN_3 под пределом по поглощению при $\lambda \approx 230$ мр удалось установить, что при пизких температурах в разложении HN_3 имеются значительные периоды индукции. При температурах, меньших 290° , в течение 1 часа распада HN_3 обнаружить пе удается, а при $T=300^\circ$ С и $P_{\mathrm{HN}_3}^{-0}=25$ тор период индукции достигает 21 мин. При повышении температуры длительность периода индукции сокращается до долей секуиды. По истечении периода индукции убыль концептрации HN_3 быстро начинает следовать кинетике первого порядка. Температурная зависимость эффективной константы скорости разложения под пределом имеет следующий вид (рис. 1): $k_{3\Phi\Phi}=10^{12}\mathrm{exp}(-41000/RT)$ сек $^{-1}$.

Было исследовано влияние аргона на положение предела воспламенения HN_3 в области низкотемпературной ветви предела (участок AB) и установлено, что добавление инертного газа Ar снижает предельное дав-

ление воспламенения. Концентрационные пределы воспламенения смесей HN_{s} —Аг для различных температур приведены на рис. 2.

Расширение области самовоспламенения и понижение предела при добавлении к парам HN₃ Ar может свидетельствовать о наличии нижнего предела цепного воспламенения с обрывом цепи в диффузионной

области. Исследованиями последних лет экспериментально показано в процессе распада HN₃ образуются колебательно возбужденные молекулы азота (N_2) , которые, возможно, являются носителями материально-энергетической (4). Одним из путей, приводящих к эффективной передаче возбуждения от $\overline{\mathrm{N}}_{2}$ к HN_{3} , может быть почрезонапсный энергией (5), в результате чего происходит колебательная накачка $HN_3(v_2)$. Другим путем, па наш взгляд, может оказаться способность \widetilde{N}_2 при соударении с НУ3 образовывать

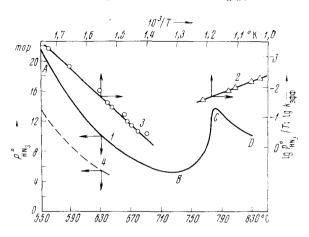


Рис. 4. Предел воспламенения HN_3 : I — по нашим данным, 4 — по данным (2), 2 — анаморфоза участка AB предела воспламенения, 3 — зависимость $\lg k_{\circ \varphi}$ от температуры

комплекс пентазол, HN_5 . Основанием для предположения о существовании пентазола служат данные об образовании фенилпентазола и структур, содержащих несколько атомов азота в цикле. Опи легко получаются из производных HN_3 и соответствующих веществ, содержащих кратные связи (6). По апалогии можно ожидать, что взаимодействие \tilde{N}_2 с HN_3 даст химический комплекс HN_5 . Это в дальнейшем может привести либо к пепосредственному образованию NH-радикала по реакции $[HN_5] \rightarrow$

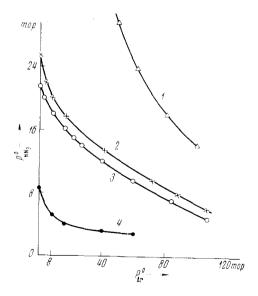


Рис. 2. Влияние Ar на предел воспламенения $\rm HN_3$ при температурах: -495° (1); -535° (2), -547° (3), -630° C (4)

 $\rightarrow 2N_2 + NH$, либо к его образованию через возбужденную молекулу азотистоводородной кислоты

$$\tilde{\mathbf{N}}_2 + \mathbf{H} \mathbf{N}_3 \rightarrow [\mathbf{H} \mathbf{N}_5] \rightarrow \tilde{\mathbf{H}} \tilde{\mathbf{N}}_3 + \mathbf{N}_2 \rightarrow \mathbf{N} \mathbf{H} - 2 \mathbf{N}_2.$$

В последнем случае, по-видимому, возможна и накачка $HN_3(v_2)$, па-блюдавшаяся в (5).

Принимая во внимание возможные различия в реакционной способности NH-радикала различной мультиплетности (4), можно предложить схему реакции термического распада HN₃, качественно согласующуюся с экспериментальными данными настоящей работы и способную формально описать как кривую рис. 1, так и кривую рис. 2.

$$HN_3 \rightarrow NH ('\Delta) + N_2 ('\Sigma),$$
 (0)

$$NH(\Delta) \perp HN_3 \rightarrow \widetilde{N_2H_2} \perp \widetilde{N}_2,$$
 (1)

$$\widetilde{N_2H_2} \rightarrow \widetilde{\overline{N}_2} - H_2,$$
 (2)

$$\widetilde{N}_{2} + HN_{3} \rightarrow [HN_{5}] \rightarrow NH ('\Delta) + 2N_{2},$$

$$\downarrow \widetilde{N}_{3} + N_{2} \rightarrow NH ('\Delta) + 2N_{2}$$
(3)

(или резонансная передача энергии от $\widetilde{\mathrm{N}}_{\scriptscriptstyle 2}$ к $\mathrm{H}\mathrm{N}_{\scriptscriptstyle 3}$)

$$N_2H_2 \rightarrow 2NH (^3\Sigma^-),$$
 (4)

$$NH(^{3}\Sigma) + HN_{3} \rightarrow NH_{2} + N_{3},$$
 (5)

Процессы гибели активных частиц.

С ответственной за разветвление реакцией (2) конкурирует процесс (4), роль которого по мере повышения температуры должна возрастать. До тех пор, пока вклад стадии (4) пренебрежимо мал, предельное давление самовосиламенения падает с новышением температуры (участок AB рис. 1). По мере увеличения T w_4 / $w_2 = A_4$ / A_2 exp($-E_4 + E_2$) становится больше, а разветвления все более редкими. Предел самовосиламенения при этом возрастает (BC, рис. 1). Увеличение предела ограничено сверху давлением, при котором достигается условие теплового взрыва (7), который может определять дальнейший ход предельной кривой (CD, рис. 1). Если обрыв цепи лимитируется диффузией активного центра к

стенке, то добавление Ar может приводить к снижению предела (рис. 2). Заметим, что несмотря на высокую энергию HN=NH-связи в молекуле диимина (100 ккал/моль) (8)), вероятность распада по этой связи при взрыве HN₃ может быть достаточно высока для того, чтобы конкуренция стадий (2) и (4) при наших рабочих температурах была возможна. Весьма значительный тепловой эффект реакции (1), равный 120 ккал/моль (8, 9), дает возможность предположить, что оба ее продукта могут получиться в колебательно возбужденных состояниях. Наиболее вероятно сосредоточение избыточной колебательной энергии диимина на валентной HN=NH-связи (10), что может приводить к повышению вероятности распада диимина по пути (4).

На различие в механизме распада НN₃ в разных температурных областях указывают и эксперименты по разложению НN3 в ударных волнах, где (5) граничная темпертура находится вблизи 1100° К. Ниже этой температуры существенную роль играют радикальные реакции; при высоких температурах первичным продуктом распада HN_3 является $\mathrm{NH}\left({}'\Delta
ight)$, а при достаточно низких следует ожидать образования $NH(^3\Sigma^-)$ как первичного продукта (5). Исходя из этого можно было бы связать экстремальный характер предела термического самовоспламенения НN₃ с первичным актом распада. Однако практическое совпадение параметров найденной нами $\hat{k}_{ ext{a} ext{d} ext{d}}$ для разложения $ext{HN}_{ ext{3}}$ при низких температурах и соответствующих величин (5) константы скорости реакции $HN_3 \rightarrow NH(\Delta) + N_2(\Sigma)$ дают возможность предположить, что спиново запрещенный путь имеет существенно меньшую скорость на нашем температурном интервале. При этом приходится помнить о том, что $k_{\circ \phi \phi}$ может относиться не к первичной стадии, если не она является лимитирующим процессом медленного разложения азотистовопоронной кислоты пол пределом.

Московский государственный университет им. М. В. Ломоносова

Поступило 17 XI 1972

(6)

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. С. Джиджеев, В. И. Марковидр., ЖЭТФ, 57, 411 (1969); Н. Г. Басов, В. В. Громовидр., Письма ЖЭТФ, 10, 5 (1969). ² D. Gray, Т. С. Waddington, Nature, 179, 576 (1957). ³ А. С. Соколик, С. Я. Яптовский, ЖФХ, 20, 13 (1946); А. С. Соколик, Самовосиламенение, плами и детонация в газах, М., 1960. ⁴ В. Г. Воронков, А. С. Розенберг, ДАН, 177, 835 (1967); А. С. Розенберг, Кандидатская диссертация, МГУ, 1969. ⁵ И. С. Заслонко, С. М. Когарко, Е. В. Мозжухии, Кинетика и катализ, 13, 4 (1972). ⁶ А. Н. Несмеянов, Н. А. Несмеянов, Начала органической химии, 2, М., 1970, стр. 318. ⁷ Н. Н. Семенов, О некоторых проблемах химической кинстики и реакционной способности, М., 1958. ⁸ S. Foner, R. Ниdson, J. Chem. Phys., 28, 179 (1958). ⁹ Термодинамические свойства индивидуальных веществ, Справочник под редакцией В. П. Глушко, М., 1962. ¹⁰ В. Н. Кондратьев, Кинетика газовых химических реакций, М., 1958.