УДК 542.943.5

ХИМИЯ

Д. С. ГОРБЕНКО-ГЕРМАНОВ, И. В. КОЗЛОВА

О МЕХАНИЗМЕ РАСПАДА ОЗОНА В ЩЕЛОЧНЫХ ВОДНЫХ СРЕДАХ

(Представлено академиком И.В. Петряновым-Соколовым 4 І 1973)

Озон является одним из наиболее перспективных и энергичных окислителей. Реализация окислительного действия озона в водных растворах тесно связана с условиями и механизмом его распада. Известно, что распад озона катализируется ОН⁻-ионами, однако до сих пор отсутствует единое мнепие о механизме его распада. Приведенные в литературе от-

дельные элементарные акты предложенных механизмов (1, 2) не были подтверждены экспериментально.

Целью данной работы было выяспение механизма распада озона в щелочных водных средах на основе идентификации образующихся промежуточных продуктов и исследования кипревращения. нетики их 1969 г. впервые спектрофотометрическим методом по полосе поглощения λ_{max} 4380 Å был идентифицирован озонидный ион-радикал $\hat{\mathrm{O}_3}^-$ в озонированных при $-50^{\circ} \text{ C 8 } M \text{ растворах KOH (3) *}.$ Преимущество этой системы состоит в том, что процессы распромежуточных в ней достаточно замедлены, и это позволило применить для их идентификации методы и полярографии. Существенно также, что в этой системе может быть достигнута концентрация промежуточных частиц порядка 10^{-3} — 10^{-4} мол/л, т. е. на 2-3порядка больше, чем в системах

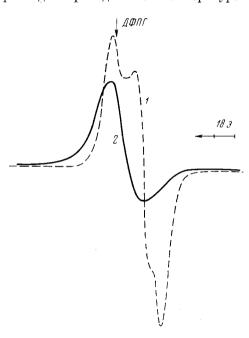


Рис. 1. Спектры э.п.р. озонидного иопа O_3 — (1) после озонирования 8 M раствора КОН при -50° и супероксидного иона O_2 — (2) после распада O_3 — при -50° (спектры образцов снимались при -196° С)

флеш-фотолиза и импульсного радиолиза оксигенированных щелочных растворов, в которых с помощью спектрофотометрической импульсной техники были зафиксированы короткоживущие частицы $OH^{\bullet}, O^{\overline{\bullet}}, O_{\overline{2}}^{\overline{\bullet}}, O_{\overline{3}}^{\overline{\bullet}}$.

В данной работе применялся озонированный кислород с копцентрацией 50—70 мг О₃ на 1 л О₂. Предварительные опыты, проведенные па спектрофотометрах Шимадзу MPS—50L и Перкин — Эльмер-450, показали,

^{*} Вайсс, наблюдавший в подобных системах поглощение в видимой области, ошибочно приписал его супероксидному иону O_2 — и предложил схему распада озола через HO_2 и O_2 —: O_3 + O11— O_4 = O11 = O11

что озонированные при -50° 8 M растворы КОН имеют поглощение в у.-ф. ($\lambda_{\rm max}$ 2550 Å) и видимой ($\lambda_{\rm max}$ 4350 Å) областях. Для одновременной регистрации этих спектральных областей в дальнейшем использовалась скоростная спектрофотометрическая установка СП-127М с термостатируемым кюветным отделением. Кювета одновременно служила и реакционной ячейкой. Регистрация спектров осуществлялась фотографическим методом. В качестве источника света применялась ртутно-гелиевая лампа ДРГС-12; измерение оптических плотностей проводилось на линиях ртути 2537 и 4358 Å.

Было найдено, что в процессе озонирования наблюдается одновременный рост поглощения в обеих областях с постоянным отношением D_{4358} Å / D_{2537} Å = 7 ± 1, обусловленного накоплением $O_3^{\overline{3}}$. Pacnag $O_{\overline{3}}$ после окончания озонирования определялся по уменьшению поглощения при 4358 Å ($\epsilon_{\rm O}^{4358}=1770\pm70$ мол $^{-1}\cdot$ см $^{-1}$) и протекал по реакции I порядка $(k = 0.054 \pm 0.004 \text{ мин}^{-1}; t_{1/2} = 13.0 \pm 1.0 \text{ при } -50.0 \pm 0.2^{\circ})$. Поглощение при 2537 Å после прекращения озонирования сначала возрастало по мере распада O_3^{-1} , а затем (после исчезновения O_3^{-1}) оставалось постоянным в течение 60-70 мин., что свидетельствовало о накоплении продукта, стабильного в этих условиях. Спектры э.п.р. замороженных исследуемых растворов (прибор $\dot{P}\partial$ -1301, температура -196°) показали, что желтые растворы сразу после озонирования имели сигнал, характерный для $O_{\overline{3}}$ (7, 8); после полного распада O_3^- и обесцвечивания раствора форма сигнала изменялась и становилась характерной для O_2^{-7} (7, 9) (рис. 1). Дополнительное подтверждение было получено при съемке спектров э.п.р. модельных растворов KO_3 или KO_2 в 8 M KOH, идентичных соответственно спектрам I или 2 на рис. 1.

На рис. 2 представлены кинетические кривые распада O_3^- и накопления его продукта O_2^- , поглощающего при $2537\,\mathrm{\AA}$ ($\epsilon\,\frac{2537}{O_2^-} = 980 \pm 140\,\mathrm{mon^{-1}\cdot cm^{-1}}$ (10)), после вычитания поглощения, обусловленного O_{3}^{-} ($\epsilon_{03}^{2537}=250\pm40$ мол⁻¹·см⁻¹). Исходя из значений $\epsilon_{O_3}^{4358} = 1770 \,\mathrm{мол^{-1}} \cdot \mathrm{сm^{-1}}$ и $\epsilon_{O_2}^{2537} = 980 \,\mathrm{мол^{-1}} \cdot \mathrm{cm^{-1}}$ \cdot см $^{-1}$, были рассчитаны концентрации 0_3 (в момент окончания озонирования) и O_{2}^{-} (после полного распада O_{3}^{-} при -50°); $[O_{3}^{-}]/[O_{2}^{-}]=$ $=2.5\pm0.5$. В связи с относительной устойчивостью в этих условиях супероксидного ион-радикала O_2^- кинетика его распада исследовалась при комнатных температурах. На рис. З представлен распад O_{2}^{2} в 8 M KOH при $27.5 \pm 0.5^{\circ}$ (реакция II порядка, $k = (6.9 \pm 1.0) \cdot 10^{\circ}$ л·мол⁻¹·мпн⁻¹, $C_0 = 3.4 \cdot 10^{-4} \text{ мол/л}$). После полного распада O_2^- при комнатной температуре в области 2537 Å оставалось поглощение, обусловленное его продуктом распада. Этот продукт далее распадался в 8 М КОН по реакции І порядка $(k = (6.0 \pm 0.5) \cdot 10^{-3} \text{ мин}^{-1}, t_{\%} = 115 \pm 15 \text{ мин. при } 27.5 \pm 0.5^{\circ} \text{ C})$ и является перекисью водорода. Идентификация осуществлялась спектрофотометрическим изучением кинетики распада перекиси водорода в модельных растворах 8 M КОН ($\epsilon_{\text{HO}_2}^{2537} = 295 \pm 5 \text{ мол}^{-1} \cdot \text{см}^{-1}$ при $27.5 \pm 0.5^{\circ}$)

и полярографическим методом. После полного распада O_2^- (отсутствие сигнала э.п.р.) раствор закислялся серной кислотой до рН 9,5, при охлаждении до O° и интенсивном перемешивании, и в нем полярографическим методом определялась концентрация перекиси водорода. Было найдено, что $O(3) / (H_2O_2) = 5,5 \pm 0,5$.

На основании полученных данных о последовательном превращении $O_3 \to O_3^- \to O_2^- \to HO_2^- \to O_2^-$ и соотношений $O_3^- \to O_2^- \to O_2^-$ и соотношений $O_3^- \to O_2^-$ и соотношен

^{*} В сильнощелочных средах HO_2 , OH и H_2O_2 существуют соответственно в виде O_2 -, O^- и HO_2 -.

I стадия (озонирование; -50°)

$$2(O_3 + OH^- \to O_3^- + OH),$$
 (1)

$$2(OH' + OH' \rightarrow O'' + H_2O),$$
 (2)

$$O_3 + O^{-} \rightarrow O_2^{-} + O_2,$$
 (3)

$$O_2^{-} + O^{-} + H_2O \rightarrow 2OH^{-} + O_2,$$
 (4)

$$3O_3 + 2OH^- \rightarrow 2O_3^- + H_2O + 2O_2$$
 (5)

II стадия (распад О; -50°)

$$3(O_3^{\overline{+}} \to O^{\overline{+}} + O_2), \tag{6}$$

$$0^{-} + 0^{-} + H_2O \rightarrow O + 2OH^{-},$$
 (7)

$$0 + 0^{-} \rightarrow 0^{-}_{2} \tag{8}$$

$$\left[O_3^{\overline{\cdot}}\right]/\left[O_2^{\overline{\cdot}}\right] = 3^{-1}$$

 $[O_3^{\overline{+}}]/[O_2^{\overline{+}}]=3$ $^{/}$ III стадия (распад $O_2^{\overline{+}}$; 27,5°)

$$2O_2^- + H_2O \rightarrow HO_2^- + OH^- + O_2,$$
 (10)

$$[O_3^{+}]/]HO_2^{-}] = 6,$$

IV стадия (распад HO₂-; 27,5°)

Суммарная реакция

$$HO_2^- \to OH^- + \frac{1}{2}O_2.$$
 (11)

При сложении уравнений (5), (9) (10) и (11) получим
$$2O_3 \rightarrow 3O_2$$
. (12)

Согласно приведенному механизму, в процессе распада озона генерируются гидроксильные радикалы $OH^{\bullet}(O^{-})$, которые в присутствии окис-

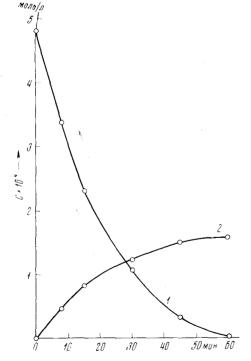


Рис. 2. Кинетика распада О₂ т (1) и накопления О2 (2) после озонирования 8 М раствора КОН при -50° С

ляющихся веществ расходуются на окисление, а не на рекомбинацию. Поскольку распад озона катализируется ионами ОН-, естественно полагать, что в относительно слабощелочных средах (pH 10-12) и при комнатных

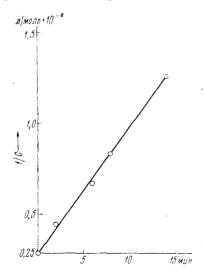


Рис. 3. Кинетика распада ${\rm O_2^{-2}}$ в 8 M растворе КОН при $27.5 \pm 0.5^{\circ}$ С

температурах распад идет по тому же механизму, но с разными скоростями протекания элементарных актов. Образование гидроксильных радикалов при распаде озона (рН 12, температура 20—25°) подтверждается энергичным окислением предельных органических соединений в этих условиях по механизму отрыва водорода (11).

Физико-химический институт им. Л. Я. Карпова Москва Поступило 16 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Alder, G. Hill, J. Am. Chem. Soc., 72, 1884 (1950). ² Е. Abel, Monatsh. Chem., 86, № 1, 44 (1955). ³ И. А. Казарновский, Д. С. Горбенко-Германов, И. В. Козлова, Изв. АН СССР, сер. хим., 1969, 197. ⁴ J. Weiss, Trans. Farad. Soc., 31, 668 (1935). ⁵ L. M. Dorfman, R. F. Firestone, Ann. Rev. Phys. Chem., 18, 477 (1967). ⁶ D. Behar, G. Czapski, Isr. J. Chem., 6, 43 (1968). ⁷ П. Эткинс, М. Саймонс, Спектры ЭПР и строение неорганических радикалов, М., 1970. ⁸ Ning-Bew Wong, J. H. Lunsford, J. Chem. Phys., 56, № 6, 2664 (1972). ⁹ Б. Г. Ершов, А. К. Пикаев, Изв. АН СССР, сер. хим., № 5, 922 (1964). ¹⁰ G. Сzapski, L. М. Dorfman, J. Phys. Chem., 68, 1169 (1964). ¹¹ Д. С. Горбенко-Германов, Н. М. Водопьянова и др., ДАН, 210, № 5 (1973).