MATEMATUKA

В. В. ГУДКОВ, А. Я. ЛЕПИН

О НЕОБХОДИМЫХ И ДОСТАТОЧНЫХ УСЛОВИЯХ РАЗРЕШИМОСТИ НЕКОТОРЫХ КРАЕВЫХ ЗАДАЧ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

(Представлено академиком А. Н. Тихоновым 17 VII 1972)

В настоящей работе даются необходимые и достаточные условия разрешимости краевой задачи

$$x'' = f(t, x, x'), \quad L_1(x(a), x(b), x'(a), x'(b)) = 0,$$

$$L_2(x(a), x(b), x'(a), x'(b)) = 0,$$
(1)

где f удовлетворяет условию Каратеодори на $S = I \times R^2$, $I = [a, b] \subset R = (-\infty, \infty)$, L_1 , $L_2 \in C(R^4)$ и удовлетворяют определенным условиям монотонности.

Для случая $f \in C(S)$, $L_1 = x(a) - x(b)$, $L_2 = x'(a) - x'(b)$ Г. Кноблох (1) дал достаточные (практически необходимые и достаточные) условия разрешимости задачи (1). Для случая $f \in C(S)$, $L_1 = x(a) - A$, $L_2 = x(b) - B$ К. Шредер (2) установил необходимые и достаточные условия разрешимости задачи (1).

Введем ряд обозначений: AC(I) — множество абсолютно непрерывных на I функций; $p \lor t$ — почти для всех t; для α , $\beta \in C(I)$, φ , $\psi \in C(I \times R)$ определим множества

$$\omega = \{(t, x) : t \in I, \ \alpha(t) \leq x \leq \beta(t)\},$$

$$\Omega = \{(t, x, x') : t \in I, \ \alpha(t) \leq x \leq \beta(t), \ \varphi(t, x) \leq x' \leq \psi(t, x)\},$$

$$T = \{(x, y, z_1, z_2) : \alpha(a) \leq x \leq \beta(a), \ \alpha(b) \leq y \leq \beta(b),$$

$$\varphi(a, x) \leq z_1 \leq \psi(a, x), \quad \varphi(b, y) \leq z_2 \leq \psi(b, y)\}.$$

Пусть $L_i \in C(R^4)$, $i \in \{1, 2\}$. Поставим в соответствие функции L_i ряд чисел $(\sigma_{i1}, \sigma_{i2}, \sigma_{i3}, \sigma_{ii})$, который мы будем называть типом монотонности функции L_i , так что для $j \in \{1, 2, 3, 4\}$ будет $\sigma_{ij} = 1$, если L_i возрастает по x_j ; $\sigma_{ij} = -1$, если L_i убывает по x_j ; $\sigma_{ij} = 0$, если L_i пе зависит от x_j и $\sigma_{ij} = \pm 1$ при произвольной зависимости L_i от x_j . В дальнейшем для краткости мы будем писать $L_i(x)$ вместо $L_i(x(a), x(b), x'(a), x'(b))$.

Пусть в задаче (1) L_1 и L_2 удовлетворяют следующим условиям монотонности: $\sigma_{14}L_1$ принадлежит типу (-1, 1, 1, 1), $\sigma_{21}L_2$ — типу (1, 1, 1, -1), причем L_2 строго монотонна по третьему или четвертому аргументу.

Теорема 1. Пусть

- 1) $\alpha, \beta \in AC^1(I), \varphi, \psi \in C(I \times R), \gamma_1, \gamma_2 \in \{-1, 1\};$
- 2) $\alpha(t) \leq \beta(t)$ $\forall t \in I;$
- 3) $\alpha''(t) \geqslant \dot{f}(t, \alpha(t), \alpha'(t))$ $pVt \in I$,

$$\beta^{\prime\prime}(t) \leq f(t,\beta(t),\beta^\prime(t)) \quad \text{pV} t \in I;$$

- 4) $L_1\alpha = 0 = L_1\beta$, $\sigma_{21}L_2\alpha \geqslant 0 \geqslant \sigma_{21}L_2\beta$;
- 5) $\varphi(t,x)$ и $\psi(t,x)$ непрерывно дифференцируемы по x, а $\varphi(t,x(t))$ и $\psi(t,x(t))$ $\forall x \in AC^1(I)$ абсолютно непрерывны;

6)
$$\varphi(t, x) \leq \psi(t, x) \quad \forall (t, x) \in \omega;$$

7)
$$\varphi(t, \alpha(t)) \leqslant \alpha'(t) \leqslant \psi(t, \alpha(t))$$
 $\forall t \in I$,

$$\varphi(t,\beta(t)) \leq \beta'(t) \leq \psi(t,\beta(t)) \quad \forall t \in I;$$

8)
$$(f(t, x, \varphi(t, x)) - \varphi_t(t, x) - \varphi_x(t, x) \varphi(t, x)) \gamma_1 \geqslant 0$$
 $p \forall t \in I$,

$$\forall x \in [\alpha(t), \beta(t)], (f(t, x, \psi(t, x)) - \psi'_t(t, x) - \psi'_x(t, x) \psi(t, x)) \gamma_2 \geqslant 0$$

$$p \forall t \in I, \forall x \in [\alpha(t), \beta(t)];$$

9) по крайней мере для одного набора $i, j, k, l \in \{1, 2\}$ и $\forall (x, y, z_1, z_2) \in$

$$(1+\gamma_1)L_i(x, y, \varphi(a, x), z_2)\sigma_{i3} + (1-\gamma_1)L_j(x, y, z_1, \varphi(b, y))\sigma_{j4} \leq 0,$$

$$(1+\gamma_2)L_h(x, y, z_1, \psi(b, y))\sigma_{h4} + (1-\gamma_2)L_l(x, y, \psi(a, x), z_2)\sigma_{l3} \geqslant 0;$$

10) существуют непрерывные продолжения L_1^* , L_2^* функций L_1 , L_2 по аргументам z_1 и z_2 вне T того же типа монотонности;

11) L_1^*, L_2^* строго монотонны по z_1 и z_2 , причем L_2^* имеет одинаковую

по модулю скорость роста по z_1 и z_2 .

Тогда эти условия являются необходимыми и достаточными для существования решениях x(t) задачи (1) такого, что

$$(t, x(t), x'(t)) \in \Omega \quad \forall t \in I. \tag{2}$$

Необходимость очевидна. Для доказательства достаточности строится краевая задача

$$x'' = F(t, x, x'), \quad \Lambda_1 x = 0, \quad \Lambda_2 x = 0 \tag{3}$$

такая, что

$$F(t, x, x') \equiv f(t, x, x') \quad \forall (t, x, x') \in \Omega, \tag{4}$$

$$\Lambda_i(x, y, z_1, z_2) \equiv L_i(x, y, z_1, z_2) \quad \forall (x, y, z_1, z_2) \in T, \forall i \in \{1, 2\}.$$
 (5)

и существование решения которой следует из работы (3). Тогда, если решение x(t) задачи (3) удовлетворяет соотношению (2), то в силу (4) и (5) x(t) будет решением задачи (1). Соотношение (2) доказывается в два этана: сначала доказываются неравенства $\alpha(t) \leqslant x(t) \leqslant \beta(t)$ $\forall t \in I$, затем неравенства $\varphi(t, x(t)) \leq x'(t) \leq \psi(t, x(t))$

Сформулируем еще четыре аналогичных теоремы.

Teopema 2. Hycro $\sigma_{14}L_1$ runa $(-1, \pm 1, 1, 1)$, $\sigma_{21}L_2$ runa (1, 1, 1, 0), причем L_z строго монотонна по третьему аргументу; тогда условия 1-3 и 5-8 теоремы 1 и условия

4) $\sigma_{14}L_1\alpha \leqslant 0 \leqslant \sigma_{14}L_1\beta$, $\sigma_{24}L_2\alpha \geqslant 0 \geqslant \sigma_{24}L_2\beta$;

9) по крайней мере для одной пары $i, j \in \{1, 2\}$ и $\forall (x, y, z_1, z_2) \in T$ выполняются неравенства

$$(1+\gamma_1)L_i(x, y, \varphi(a, x), z_2)\sigma_{i3} + (1-\gamma_1)L_i(x, y, z_i, \varphi(b, y))\sigma_{i4} \leq 0,$$

$$(1+\gamma_2)L_1(x, y, z_1, \psi(b, y))\sigma_{14} + (1-\gamma_2)L_2(x, y, \psi(a, x), z_2)\sigma_{23} \geqslant 0;$$

10) выполняется условие 10 теоремы 1 и функции L_1^* и L_2^* строго монотонны по г. являются необходимыми и достаточными для существования решения x(t) $sa\partial auu$ (1), для которого верно (2).

Теорема 3. Пусть $\sigma_{14}\bar{L}_1$ типа $(\pm 1, 1, 1, 1)$, $\sigma_{21}L_2$ типа (1, 1, 0, -1), причем L_2 строго монотонна по последнему аргументу; тогда условия 1-3 и 5-8 теоремы 1 и условия 1-3 и

4) $\sigma_{14}L_1\alpha \geqslant (\mathbf{E} \Rightarrow \sigma_{14}L_1\beta, \quad \sigma_{21}L_2\alpha \geqslant 0 \geqslant \sigma_{21}L_2\beta,$

2 дан, т. 210. №

9) по крайней мере для одной пары $i, j \in \{1, 2\}$ и $\forall (x, y, z_1, z_2) \in T$ выполняются неравенства

$$(1+\gamma_1)L_1(x, y, \varphi(a, x), z_2)\sigma_{13} + (1-\gamma_1)L_i(x, y, z_1, \varphi(b, y))\sigma_{i4} \leq 0,$$

$$(1+\gamma_2)L_j(x, y, z_1, \psi(b, y))\sigma_{j4} + (1-\gamma_2)L_1(x, y, \psi(a, x), z_2)\sigma_{13} \geq 0;$$

10) выполняется условие 10 теоремы 1 и функции L_1^* и L_2^* строго монотонны по 22

являются необходимыми и достаточными для существования решения x(t)задачи (1), для которого верно (2).

Теорема 4. Пусть $\sigma_{13}L_1$ runa (±1, 1, 1, 0), $\sigma_{21}L_2$ runa (1, ±1, 0, -1): тогда условия 1-3 и 5-8 теоремы 1 и условия

4) $\sigma_{13}L_1\alpha \geqslant 0 \geqslant \sigma_{13}L_1\beta$, $\sigma_{21}L_2\alpha \geqslant 0 \geqslant \sigma_{21}L_2\beta$,

9)
$$(1 + \gamma_1)L_1(x, y, \varphi(a, x))\sigma_{13} + (1 - \gamma_1)L_2(x, y, \varphi(b, y))\sigma_{24} \leq 0,$$

 $(1 + \gamma_2)L_2(x, y, \psi(b, y))\sigma_{24} + (1 - \gamma_2)L_1(x, y, \psi(a, x))\sigma_{13} \geq 0$
 $\forall x \in [\alpha(a), \beta(a)], \forall y \in [\alpha(b), \beta(b)]$

являются необходимыми и достаточными для существования решения $x(\mathbf{t}_f)$ задачи (1), для которого верно (2).

Теорема 5. Пусть $\sigma_{11}L_1$ типа $(1, -1, 0, 0), \alpha_{24}L_2$ типа $(\pm 1, \pm 1, -1, 1)$; тогда условия 1-3 и 5-8 теоремы 1 и условия 4) $L_1\alpha = 0 = L_1\beta$, $\sigma_{24}L_2\alpha \le 0 \le \sigma_{24}L_2\beta$,

9)
$$(1+\gamma_1)L_2(x, y, \varphi(a, x), z_2)\sigma_{23} + (1-\gamma_1)L_2(x, y, z_1, \varphi(b, y))\sigma_{24} \leq 0,$$

 $(1+\gamma_2)L_2(x, y, z_1, \psi(b, y))\sigma_{24} + (1-\gamma_2)L_2(x, y, \psi(a, x), z_2)\sigma_{23} \geq 0$

$$\forall (x, y, z_1, z_2) \in T$$

являются необходимыми и достаточными для существования решения x(t)задачи (1), для которого верно (2).

Вычислительный центр Латвийского государственного университета им. П. Стучки Рига

Поступило 19 Ĭ 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. W. Knobloch, Math. Z., 82, 3, 177 (1963). ² K. W. Schrader, J. Diff. Eguations, 5, 572 (1969). ³ А. Я. Лепин, Дифференциальные уравнения, 5, № 8, 1390 (1969).