УДК 621.771.6:669.71:620.174.24

ТЕХНИЧЕСКАЯ ФИЗИКА

Член-корреспондент АН СССР В. С. СМИРНОВ, В. И. ВЛАДИМИРОВ, А. И. МАРТОН, Б. В. САДОВНИКОВ

ВЛИЯНИЕ ЕДИНИЧНЫХ ОБЖАТИЙ НА ПРОЦЕСС РАЗРУШЕНИЯ АЛЮМИНИЯ ПРИ ПОПЕРЕЧНОЙ ПРОКАТКЕ

В работе (¹) авторами было показано, что метод измерения плотности позволяет изучать кинетику процесса разрушения при поперечной прокатке. Было обнаружено, что процесс разрушения состоит из двух стадий: обратимой и необратимой. При суммарном обжатии ε_{Σ} в интервале $\varepsilon_{\Sigma_1} < \varepsilon_{\Sigma} < \varepsilon_{\Sigma_2}$, где ε_{Σ_1} и ε_{Σ_2} — некоторые характеристические обжатия, разрушения (нарушения сплошности) в образце носят микроскопический характер и залечиваются после прекращения деформации при отжиге или выдержке при комнатной температуре. Дефект плотности в этом интервале обжатий мал ($< 10^{-3}$ г/см³). При $\varepsilon_{\Sigma} > \varepsilon_{\Sigma_2}$ в образце появляется макроскопическая пора, видимая на рентгеновских фотографиях, которая уже не залечивается с течением времени. При дефекте плотности $> 10^{-2}$ г/см³ пора может даже расти под действием остаточных напряжений. При

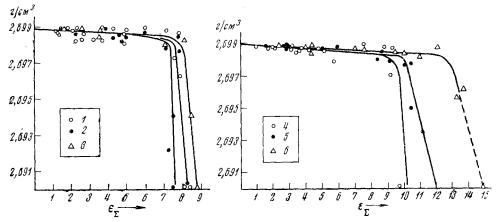
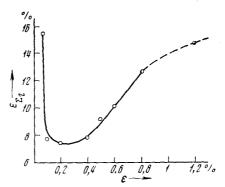


Рис. 1. Изменение плотности алюминня ρ в процессе прокатки в зависимости от суммарных обжатий ε_{Σ} при различных единичных обжатиях ε : $I=0,1\%,\ 2=0,2;\ 3=0,4:\ 4=0,5;\ 5=0,6;\ 6=0,8\%$

 $\varepsilon_{\Sigma}=\varepsilon_{\Sigma_3}$ пора прорастает до торцовых поверхностей, образуя сквозное отверстие. Характеристические суммарные обжатия ε_{Σ_1} , ε_{Σ_2} и ε_{Σ_3} оказались сильно зависящими от единичных обжатий ε . Эта зависимость и исследуется в настоящей работе.


Методика проведения эксперимента описана в работе (¹). В отличие от (¹) в данной работе использовались только образцы с максимальной исходной плотностью.

На рис. 1 показано изменение плотности ρ образцов в процессе прокатки при различных единичных обжатиях ε в зависимости от суммарных обжатий ε_2 . Из графиков видно, что при поперечной прокатке в начальный момент плотность уменьшается очень незначительно. При достижении характеристического обжатия ε_2 , соответствующего началу перегиба на графиках (рис. 1), плотность начинает уменьшаться более резко. Вели-

чина ϵ_{Σ_1} , при прочих равных условиях, зависит от единичных обжатий ϵ . С увеличением единичных обжатий выше 0.2% суммарное обжатие ϵ_{Σ_1} возрастает. При достижении суммарного обжатия ϵ_{Σ_2} , при котором дефект плотности равен $\sim 10^{-3}$ г/см³, в образце зарождаются макроскопические поры, обнаруживаемые при рентгеноскопии (рис. 3). При больших единичных обжатиях изменение плотности в интервале обжатий $\epsilon_{\Sigma_1} - \epsilon_{\Sigma_2}$ происходит более плавно (угол наклона кривой к горизонтальной оси уменьшается). На рис. 2 представлено

изменение критического обжатия ε_{Σ_2} в зависимости от единичного. единичных обжатиях 0.1— 0.4% критическое обжатие изменяется очень незначительно и имеет минимальную величину. При единичных обжатиях >0.4% возрастает с увеличением є. При единичных обжатиях <0,1% также резко возрастает и наблюдается отслаивание материала с наружной поверхности образца. Так, при прокатке образцов с единичным обжатием ~0.08% вскрытие полости наблюдали только при суммарном обжатии $\varepsilon_{\Sigma_3} = 15.7 \%$.

На основании проведенных опытов построена кривая (рис. 2), разделяющая области микроразру-

Рпс. 2. Изменение критического обжатия ϵ_{Σ_2} при прокатке алюминиевых образцов в зависимости от единичных обжатий. За критическое обжатие ϵ_{Σ_2} принято суммарное обжатие, при котором дефект плотности $\Delta_{\rm P}$ равен 10^{-3} г/см³

тений (ниже кривой) и макроразрушений (выше кривой) при поперечной прокатке алюминия. Построение подобных кривых для различных материалов позволит выбирать единичные и суммарные обжатия для прокатки в любой области, т. е. производить прокатку с макроразрушением в центральной зоне заготовки или без него, в зависимости от требований технологического процесса.

Рассмотрим причины, обусловливающие вид кривой (рис. 2). Ширина контактной площадки при поперечной прокатке уменьшается по мере приближения к торцу, в средней части образца она примерно постоянна. С увеличением единичных обжатий длина участка, на котором заметно резкое уменьшение ширины контакта, уменьшается. Согласно закону наименьшего периметра, силы трения направлены по нормалям к периметру площадки (2) и перемещение частиц металла на поверхности контакта будет происходить в направлении действия этих сил. Следовательно, наибольшая деформация в продольном направлении будет иметь место в наружных слоях торцовых участков образца, что подтверждается опытными данными С. И. Орлова и В. В. Швейкина (3).

Уменьшение единичных обжатий приведет к увеличению длины участков с повышенной продольной деформацией вблизи торцов и, следовательно, к увеличению количества торцовых эффективных * дислокаций. В работе (4) пами было показано, что эти дислокации создают в основном осевые остаточные растягивающие напряжения.

При единичных обжатиях, меньших какой-то величины є₁, глубина проникновения пластической деформации (глубина залегания торцовых эффективных дислокаций) будет мала по сравнению с радиусом образца. Вследствие влияния боковой (цилиндрической) поверхности эти дислока-

^{*} Под эффективными дислокациями подразумеваются прямолинейные дислокации (длина которых сравнима с размерами образца), движущиеся вдоль преимущественных направлений движения реальных дислокаций, т. е. вдоль линий течения, и создающие те же дальнодействующие напряжения, что и реальные дислокации $\binom{4}{5}$.

ции не будут создавать дальнодействующих напряжений. При небольших суммарных обжатиях (ε ≤ 8%) напряжения в центре образда окажутся недостаточными для зарождения трещины. При единичных обжатиях, больше какой-то величины ε₂, продольная деформация локализуется вблизи торцовой поверхности и вследствие ее влияния осевые растягивающие напряжения также уменьшаются, хотя деформация в этом случае и проникает на большую глубину.

Таким образом, должно быть оптимальное соотношение между длиной участка с повышенной продольной деформацией и глубиной проникнове-

Рис. 3. Рентгенограммы образцов после поперечной прокатки при различных обжатиях

I HAA.						
	1	2	3	4	5	6
№ образца	164	30	190	68	104	55
ρ, r/cm ³	2,6940	2,6979	2,6977	2,6976	2,6976	2,6980
$arepsilon_{\Sigma},~\%$	7,5	7,1	8,0	14.8	7,0	9,1
ϵ , %	0,2	0,2	0, 2	0,9	0,1	0,6
	7	8	\boldsymbol{g}	10	11	12
№ образца	47	95	140	70	7 5	7 6
ρ, r/cm ³	2,6972	2,6962	2,6967	2,6936	2,6958	1,6962
$\boldsymbol{\varepsilon}_{\Sigma}$, %	9,1	7,8	8,6	11 ,2	13, 3	13,6
ε, %	0,5	0,1	0,3	0,6	0,8	0,8

пия пластической деформации, при которой напряжения в центре, возникающие от торцовых эффективных дислокаций, окажутся достаточными для зарождения трещины и ее роста.

Аналогично изменяются и напряжения от эффективных осевых дислокаций. Но, как было показано в (5), при малых обжатиях деформация вблизи торцов проникает на большую глубину. Поэтому при $\varepsilon < \varepsilon_t$ основную роль будут играть осевые растягивающие напряжения σ_z от торцовых дислокаций, а радикальные σ_0 и тангенциальные (азимутальные) σ_0 растягивающие напряжения будут малы. Напротив, при $\varepsilon > \varepsilon_2$ основные напряжения будут создаваться осевыми дислоканиями: од и од будут велики. а од мало. Таким образом, можно полагать, что в промежуточной области $\varepsilon_2 > \varepsilon > \varepsilon_1$ напряженное состояние в цептре заготовки более всего приближается к трехосному растяжению и реализуется рассмотренная в (4) схема роста поры при минимальных деформациях ег. В условиях опыта (отношение длины образца l к диаметру d l/d=2,2) интервал значений $\varepsilon_1 - \varepsilon$ лежит в пределах 0.1-0.4%. При $\varepsilon < \varepsilon_1$ схема напряжений ближе к одноосному растяжению, при $\varepsilon > \varepsilon_2 - \kappa$ двухосному. Это приводит к увеличению є 2, (деформации до вскрытия сквозного отверстия) до величины. сравнимой с предельной деформацией при этих видах растяжения. В данной работе рассматривались относительно малые единичные обжатия $\varepsilon \leq 0.8\%$, при которых деформация за половину оборота заготовки еще не проникает до центра. Оценки показывают, что в этих условиях еще можно пренебречь влиянием напряжений от внешних сил и определяющую роль при разрушении будут играть остаточные папряжения.

Таким образом, нами 1) исследовано влияние небольших единичных обжатий (до 0.9%) на критические ε_{Σ_2} . Построена кривая (рис. 2), разде-

ляющая области микро- и макроразрушений при поперечной прокатке алюминиевых образцов. 2) Показано, что для определения условий разрушения в центре образца необходимо учитывать трехмерный характер пластической деформации и напряженного состояния и их изменение в зависимости от единичных обжатий є. 3) Предложено объяснение вида кривой, основанное на изменении относительного вклада во внутренние напряжения от торцовых и осевых эффективных дислокаций: при малых є основную роль играют торцовые дислокации, создающие осевые растягивающие напряжения, при больших є — осевые дислокации, создающие радиальные и тангенциальные растягивающие напряжения.

Ленинградский политехнический институт им. М. И. Калинина

Поступило 5 VI 1972

цитированная литература

¹ В. И. Владимиров, Б. В. Садовников, В. С. Смирнов, Физика и химия обработки матер., 1, 76 (1972). ² В. С. Смирнов, Теория прокатки, 1967. ³ С. И. Орлов, В. В. Швейкин, Изв. высш. учебн. завед., Черная металлургия. № 5, 55 (1959). ⁴ Б. В. Садовников, Дислокационный механизм деформации и разрушение при поперечной прокатке. Автореф. кандидатской диссертации, Ленинградск. политехинч. инст. им. М. И. Калинина, Л., 1972. ⁵ В. С. Смирнов, В. И. Владимиров, Б. В. Садовников, ДАН, 203, № 3 (1972).