Доклады Академии наук СССР 1973. Том 210, № 2

УДК 550.4.43

ПЕТРОГРАФИЯ

Ю. С. ГЕНШАФТ, В. А. МОЛЧАНОВА, В. А. КУТОЛИН УСТОЙЧИВОСТЬ ВЕБСТЕРИТА В ВЕРХНЕЙ МАНТИИ

(Представлено академиком Ю. А. Кузнецовым 21 XII 1971)

В настоящее время большинство петрологов предполагает существенно перидотитовый состав верхней мантии. Это мнение подкрепляется преобладающим распространением оливиновых гипербазитов среди включений в кимберлитах и базальтах. Однако было высказано предположение, что обилие перидотитовых включений может быть связано с большей устойчивостью оливина по сравнению с пироксенами в базальтовой магме, поэтому содержание пироксенитов в пределах верхней мантии должно быть выше, чем их доля среди ультраосновных нодулей (1). Интерес к пироксенитовому веществу обусловлен и последними данными по лунным породам. В ряде работ лунные базальты рассматриваются как дериваты первичного пироксенитового вещества Луны (2).

Ранее одним из авторов данного сообщения изучалась кристаллизация бедного ${\rm Al}_2{\rm O}_3$ пироксенита (ксенолита с Авачинского вулкана, Камчатка) до давлений 70 кбар (3). Была показана устойчивость пироксена и отсутствие кристаллизации граната и оливина при высоких температурах и давлениях

В данной работе исследовалась устойчивость одного из типов глиноземистых пироксенитов — вебстерита при высоких давлениях и температурах, соответствующих условиям в верхней мантии Земли. Образец представлял собой включение в щелочном базальте, заполняющем трубку взрыва в Минусинском межгорном прогибе у оз. Беле. Как показал А. В. Крюков (4), трубки взрыва состоят из эксплозивных брекчий, внедрившихся в две или три фазы, и более поздних базальтов, рассекающих брекчии в виде жил и серповидных тел. Химический и нормативный составы вебстерита приведены в табл. 1.

Порода сложена моноклинным пироксеном (хромдиопсид) в количестве 55%, ромбическим пироксеном (бронзит) 37%, плакиоклазом (лабрадор—андезин) 5%, гранатом 2% и рудным минералом 1%. Структурные взаимоотношения минералов показывают, что плагиоклаз является здесьвторичным образованием, развившимся по трещинам между пироксенами под воздействием вмещающего пироксенит базальта.

Таблица 1 Химический и нормативный составы вебстерита

Компонент	Содерж.,	Компонент	Содерж., вес.%	Компонент	Содерж., вес.%
$\begin{array}{c} \mathrm{SiO_2} \\ \mathrm{TiO_2} \\ \mathrm{Al_2O_3} \\ \mathrm{Fe_2O_3} \\ \mathrm{FeO} \\ \mathrm{MnO} \\ \mathrm{MgO} \\ \mathrm{CaO} \end{array}$	51,58 0,42 7,19 Не обн. 6,18 0,16 19,90 11,07	$\begin{array}{c} Na_{2}O \\ K_{2}O \\ H_{2}O^{-} \\ H_{2}O^{+} \\ P_{2}O_{5} \\ Cr_{2}O_{3} \\ \Sigma \\ Ap \end{array}$	1,00 0,28 0,16 1,34 0,16 0,47 99,91 0,34	Ilm Mt Ort Ab An Di Hy Ol	$\left(\begin{array}{c}0,76\\0,46\\1,66\\8,38\\15,02\\31,94\\25,62\\15,99\end{array}\right)$

Эксперименты проводились по методу закалки (5, 6) при давлениях от 15 до 70 кбар и температурах от 1000 до 1800° в присутствии небольшого количества воды (до 2 вес.%). Как и ранее, опыты проводились по схемам одно- и двухстадийной кристаллизации (5). В последнем случае при данном давлении температура сначала поднималась выше ликвидуса, а затем после некоторой выдержки быстро снижалась до заданного значения T, при котором проводилась кристаллизация расплава. При этом в продукты кристаллизации могли частично войти и закалочные фазы.

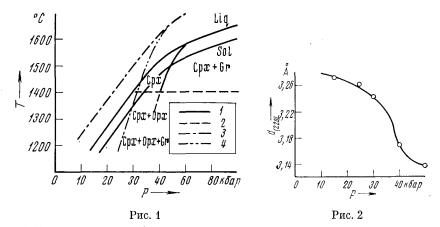


Рис. 1. Кристаллизация вебстерита при высоких давлениях и температурах. 1—граничные линии по нашим данным; 2—линия, отделяющая область кристаллизации ромбических пироксенов (внизу); 3—линия солидуса; 4—линия гранатизации пироксенита по дапным (2). Opx—ромбический пироксен, Cpx—клинопироксен, Gr—гранат, Lig—ликвидус, Sol—солидус

Рис. 2. Изменение величины межплоскостного расстояния для клиноппроксенов, кристаллизующихся вдоль линии ликвидуса

Результаты проведенных экспериментов представлены на рис. 1. В координатах давление — температура даны кривые солидуса и ликвидуса вебстерита, а также границы существования различных минеральных парагенезисов. Температуры солидуса оценены весьма приблизительно из-за обилия реликтовых и закалочных фаз. По нашим оценкам, интервал сосуществования жидкой и кристаллической фаз составляет около 50° при всех давлениях. Температура ликвидуса повышается от 1200° при давлении 15 кбар до 1580° при 50 кбар и до 1650° при 70 кбар. В области давлений от 50 до 70 кбар кривая плавления вебстерита заметно выполаживается. На диаграмме можно выделить три области давлений, различающихся по минеральным парагенезисам и количественным соотношениям кристаллических фаз.

В интервале давлений 15-30 кбар из расплава кристаллизуется двупироксеновая ассоциация минералов, причем по мере повышения давления количество клинопироксена по отношению к ромбическому пироксену возрастает. Так, если при давлении 15 кбар кристаллизуется до 80% ортопироксена, то при давлениях 25-28 кбар количество клинопироксена возрастает до 85%, а при давлении 30 кбар при температурах выше температуры солидуса кристаллизуется только клинопироксен. Вероятно, такой характер кристаллизации вебстерита объясняется увеличением растворимости ортопироксена в клинопироксене при повышении температуры (7). Стекло, соответствующее выплавкам при давлениях до 25 кбар, имеет показатель преломления n=1,623. При давлениях выше 25 кбар для стекла n=1,605-1,608.

В интервале давлений 30-40 кбар из расплава кристаллизуется только моноклинный пироксен. По данным рентгеновских исследований но-

вообразованного пироксена, с увеличением давления кристаллизации происходит уменьшение межплоскостного расстояния $d_{(220)}$ (см. рис. 2). Это можно объяснить увеличивающейся растворимостью ортопироксена в клинопироксене при давлениях около 30 кбар, что соответствует температурам кристаллизации около 1400° (7, 8).

При давлениях выше 40 кбар наблюдается парагенезис минералов, включающий в себя гранат. Максимальное количество граната в парагенезисе составляет в наших экспериментах 15%. Судя по показателю пре-

ломления граната (N = 1,708), он близок по составу к пиропу.

При всех давлениях наблюдалась кристаллизация рудного минерала в количестве около $2-5\,\%$

Сравнение полученной нами P, T-диаграммы вебстерита с диаграммой для пироксенита по A. Рингвуду (2) показывает, что в обоих случаях наблюдалась одинаковая схема изменения минеральных парагенезисов под давлением (см. рис. 1). Различия в положениях фазовых границ объяснимы за счет различий в химическом составе образцов и присутствия в наших условиях небольшого количества волы.

Сравнение нормативного и модального минерального состава вебстерита с полученными данными показывает, что глиноземсодержащие пироксениты могут быть устойчивыми в пределах верхней мантии до глубин около 100 км. В этих условиях эволюция пироксенитового вещества будет

определяться кристаллизацией только двух пироксенов.

Поступило 4 X 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ V. A. Kutolin, V. M. Frolova, Contr. Mineral, and Petrol., **29**, 163 (1970). ² A. E. Ringwood, J. Geophys. Res., **75**, 6453 (1970). ³ Ю. С. Геншафт, В. В. Наседкий и др., ДАН, 195, 441 (1970). ⁴ А. В. Крюков, Геология юго-западного обрамления Сибирской илатформы, М., 1964. ⁵ Ю. С. Геншафт, В. В. Наседкий и др., Изв. АН СССР, сер. геол., № 6, 18 (1967). ⁶ Ю. С. Геншафт, В. В. Наседкий и др., Изв. АН СССР, сер. геол., № 12, 31 (1968). ⁷ F. R. Воу d, Carnegie Inst. of Washington, Year Book, 65, 253 (1966). ⁸ Экспериментальная петрология и минералогия, М., 1969, стр. 65.