УДК 546.45 ХИМИЯ

А. И. ГРИГОРЬЕВ, В. И. НЕФЕЛОВ

РЕНТГЕНОЭЛЕКТРОННЫЕ СПЕКТРЫ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ БЕРИЛЛИЯ

(Представлено академиком А.В. Новоселовой 27 XI 1972)

Как было показано в работах (1, 2), существует линейная зависимость между величиной энергии связи электронов на внутренних уровнях E и эффективным зарядом атома q. Хотя точное определение величины q на атомах бериллия на основе энергии связи 1s-электрона невозможно, используя указанную выше зависимость можно оценить тенденцию в изменении эффективного заряда металла в ряду комплексных соединений бериллия. Для исследования были выбраны соединения с кислородсодержащими мостиковыми лигандами: бидентатной однозарядной ацетатной, формиатной, метоксильной, этоксильной и гидроксильной грунпами, а также двухзарядным тетраэдрическим кислородом.

Рентгеноэлектронные спектры записывались на рентгеноэлектронном спектрометре VIEE—1s. Методика съемки описана в работе (3). Гигросконичные образцы готовились в сухом боксе. Для энергии C1s-линии от углеводородного слоя принято значение 285,3 эв. Результаты измерений даны в табл. 1, где вещества расположены в порядке убывания энергии уровня

Энергия линий, эв

Таблица 1

	Beis		04.	<u> </u>
	найдено	вычислено	Ois	Cis
Be(OOCCH ₃) ₂ Be(OH)OOCCH ₃ Be ₄ O(OOCCH ₃) ₆ Be(OOCH) ₂ Be ₄ O(OOCH) ₆ Be ₆ O ₂ (OOCCH ₃) ₈ Be ₇ O ₂ (OOCCH ₃) ₈ (OH) ₂ Be ₅ O ₂ (OOCCH ₃) ₆ BeO	114,6 114,4 114,3 114,3 114,3 114,2 114,2 114,2 114,2	114,6 114,4 114,4 114,3 114,2 114,4 114,3 114,3 113,9	533,1 532,8 532,8 533,1 532,7 532,7 532,8 532,8	290,0 289,8 289,6 289,6 289,5 289,6 289,6
$\begin{array}{c} \operatorname{Be}(\operatorname{OC}_2\operatorname{H}_5)\operatorname{OOCCH}_3\\ \operatorname{Be}(\operatorname{OC}_2\operatorname{H}_5)_2\\ \operatorname{Be}(\operatorname{OCH}_3)_2 \end{array}$	113,8 113,6 113,1	114,0 113,4 113,1	532,6 532,8	288,8 карб 286,8 286,6

Ве1s. Там же даны значения энергий O1s-уровней атомов кислорода, а также C1s-уровня ближайшего к нему атома углерода. Как следует из данных табл. 1, наибольший положительный заряд на атоме металла имеется в ацетате бериллия. Следовательно, связи Ве—О в этом соединении наиболее ионные из всего исследованного ряда. Рассматривая сдвиг 1s-линий бериллия в комплексных соединениях как аддитивную функцию парциальных сдвигов, вызванных координированными лигандами, можно составить ряд парциальных сдвигов лигандов по отношению к ацетатной группе *. Этот

^{*} Наличие аддитивности сдвига рентгеноэлектронных линий показано для соединений C, S, Pt, Pd, Ir, Rh (4).

ряд приведен в табл. 2. Во всех случаях величины сдвигов уровней отнесе-

ны к бидентатным однозарядным лигандам.

Исходя из приведенных в табл. 2 парциальных параметров были рассчитаны значения Be1s для соединений, указапных в табл. 1. Как следует из данных этой таблицы, рассчитанные значения удовлетворительно согласуются с экспериментальными (элемент проверки аддитивности имеется для пяти соединений), хотя среди рассмотренных соединений бериллия имеются как соединения с молекулярными решетками, так и полимерные структуры.

Если сопоставить ряд, приведенный в табл. 2, с аналогичным рядом соединений, в которых вместо бериллия с кислородом связан водород (кислоты — вода — спирты), то оказывается, что ход парциальных параметров в общем соответствует убыванию кислой функции протона (от кислоты к воде

и далее к спиртам).

Уменьшение положительного эффективного заряда на атомах бериллия в ряду соединений $\mathrm{Be}(\mathrm{OOCCH_3})_2$... $\mathrm{Be}(\mathrm{OCH_3})_2$ (см. табл. 1, а также табл. 2) хорошо согласуется с обнаруженным ранее попижением способности соединений в том же ряду к реакциям с аммиаком или алифатическими аминами. Так например, если $\mathrm{Be}(\mathrm{OOCCH_3})_2$ легко присоединяет две молекулы газообразного аммиака при нормальных условиях (5), то ни $\mathrm{Be}(\mathrm{OC}_2\mathrm{H}_5)_2$, ни $\mathrm{Be}(\mathrm{OC}_2\mathrm{H}_5)$ ООССН $_3$ не взаимодействует с газообразным или жидким аммиаком в пределах $-33 \div +20^\circ$ (6).

Некоторую аномалию по сравнению с изменением кислотной функции соответствующих кислот или спиртов обнаруживает взаимное расположение величин парциальных параметров для ацетатной и формиатной групп, с одной стороны, и этоксильной и метоксильной—с другой (см. табл. 2).

Таблица 2 Парциальные параметры сдвигов

OOCCH3	оосн	ОН	1/2O	OC ₂ H ₅	OCH3
0	-0,15	-0,2	0,35	-0,6	0,75

Объяснение этого обстоятельства, по-видимому, заключается в том, что CH_3 -группа обладает значительно большей поляризуемостью по сравнению с водородом (7). Благодаря этому в случае кислоты или спирта — соединений с более ковалентными связями у кислорода — она усиливает их ковалентный характер (вследствие индукционного эффекта). В случае соединений бериллия, где связи кислорода с металлом более понные, она является акцептором электропов, что приводит к повышению ионности связей у ацетата бериллия по сравнению с формиатом, а также у этилата бериллия по сравнению с метилатом.

Москевский государственный университет им. М. В. Ломоносова

Поступило 27 XI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ К. Зигбан и др., Электронная спектроскопия, 1971. ² К. Siegbah n et al., ESCA Applied to Free Molecules, North — Holland, 1969. ³ В. И. Нефедов, А. И. Григорьев, М. А. Порай-Кошии, ДАН, 204, 140 (1972). ⁴ В. Й. Нефедов, Докторская диссертация, ИОНХ АН СССР, 1972. ⁵ А. И. Григорьев, Е. Г. Погодилова, А. В. Новоселова, ЖНХ, 10, 772 (1965). ⁶ Т. Ю. Орлова, А. И. Григорьев, А. В. Новоселова, Вестн. Московск. унив., № 3, 27 (1967). ⁷ К. К. Ингольд, Механизм реакций и строение органических соедичений, М., 1959.