Доклады Академин наук СССР 1973. Том 210, № 2

ГЕОХИМИЯ

В. А. ГРИНЕНКО, А. А. МИГДИСОВ, Н. В. БАРСКАЯ

ИЗОТОПЫ СЕРЫ В ОСАДОЧНОМ ЧЕХЛЕ РУССКОЙ ПЛАТФОРМЫ

(Представлено академиком А. П. Виноградовым 27 III 1972)

В литературе есть многочисленные данные по изотопному составу сульфатной серы древних эвапоритов (4 , 2). В то же время сведения об изотопном составе пиритиой серы осадочных пород отрывочны и основываются главным образом на анализах конкреционных сульфидов. В связи с этим трудно представить себе зависимость изотопного состава разных форм серы от условий формирования осадков, оценить масштабы дисперсии разных осадочных пород по изотопному составу их серы и судить о среднем значении величины δS^{34} , которая, кстати сказать, варьирует, по данным разных авторов, от +3 до $+15 \div +20\%$ (3 , 4).

В настоящем соообщении приводятся данные о среднем изотопном составе серы в глинистых и карбонатных породах различных генетических типов на Русской платформе и сделана попытка оценить средний изотопный состав серы всего осадочного чехла этого крупного региона.

С целью получения наиболее достоверных оценок анализировались ие отдельные образцы пород, а сложносмешанные пробы (5), отражающие средневзвешенный состав пород осадочной толщи, сформированных в определенных климатических и фациальных условиях. Результаты анализов приведены в табл. 1.

Таблица 1 Средний изотопный состав различных форм серы в основных фациальных комплексах фанерозойских осадочных пород Русской илатформы

	Г'лины						Карбонаты				
Климатические и фациальные условия седи- ментации	число проб	Число обр.	δ S ³⁴ , ⁰ / ₀₀				90		δ S ³⁴ , ⁰ / ₂₀		
			сульф	Surp	Sopr	Seблц	9òdп огаи _Б	Число обр.	Зеульф	Sump	Sобщ
Гумидные Континен- тальные	140	1239	12,0	- 7,0	-2,8	- 8,0	_				
прибрежно- морские Пелагические				-15,5 $-21,6$		$\begin{bmatrix}16, 4 \\ -20, 3 \end{bmatrix}$	52 16			-16,0 $-10,8$	
Среднее	444			15,6		· · · · ·	68	· · · · ·	- 	-14,9	
Аридиые Континен- тальные	46	1173	+10,3	- 8,1		+8,1	11	1120	+12,9	— 7,3	+ 0,7
Засолоненные лагуны	48	931	+20,0	-7,5	_	+9,9	4 3	1908	+19,1	11,5	+17,1
Прибрежно- морские	65	1226		—1 0,0	+2,3	6,8	83	2879	+17,4	-13,8	+3,4
Пелаги ческие	1 3	923	+7,2	15,4	_	-9,4	79	4149	+20,2	16,3	+15,0
Среднее	172	4253	$ _{+7,8}$	[-10,6]	+2,3	$ _{-1,7}$	216	 10 056	+18,4	14,0	+13,1

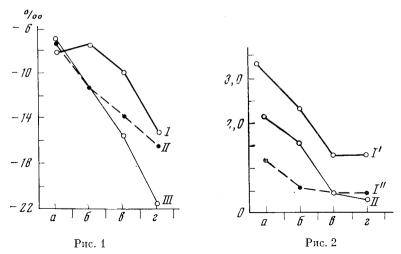


Рис. 1. Изменение изотопного состава пиритной серы на фациальном профиле гу мидных и аридных бассейнов. I— глины аридные, II— карбонаты, III— глипь гумидные. Климатические и фациальные условия седиментации: a— континентальные, δ — прибрежно-морские, ϵ — пелагические

Рис. 2. Изменение отношений $\operatorname{Fe_2O_3}/\operatorname{FeO}$ (I) и $\operatorname{S_{\text{сульф}}}/\operatorname{S_{\text{пир}}}$ (I) на фациальном профиле гумидных и аридных бассейнов. I', II—глины, I''— карбонаты. $a-\varepsilon$ —то же, что на рис. 1

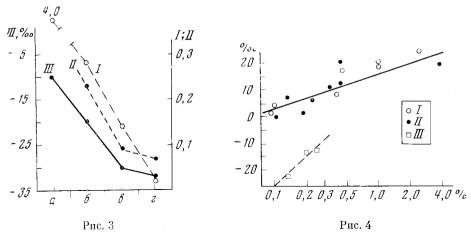


Рис. 3. Изменение изотопного состава пиритпой серы и отношений Fe^{3+}/Fe^{2+} (I и $S_{\text{суль}\psi}/S_{\text{пир}}$ (II) (по дапным ($^{7-10}$)) на фациальном профиле современного бас сейна (Черное море. $III - \delta S^{34}_{\text{пир}}$. a — речная взвесь, илы рек, озер; b — при брежные илы окислительной зоны; b — прибрежно-морские илы восстановительной зоны; b — пелагические илы восстановительной зоны

Рис. 4. Соотношение изотопного состава сульфатной серы и ее содержания в гли нах и карбонатах Русской платформы. I — карбонаты, II — глины аридные; III — глины гумидные

Рассматривая изменение изотопного состава пиритной серы, можно видеть (рис. 1), что при переходе от континентальных условий к отложе ниям центральных частей бассейнов, расположенных как в аридной, так и в гумидной климатических зонах, и независимо от литологического типа формирующихся осадков неизмению наблюдается закономерное увеличе ние содержания легкого изотопа серы. Столь четко выраженная законо мерность должна, по-видимому, говорить об усилении процессов изотопно го фракционирования при бактериальной сульфатредукции по мере смень физико-химических условий седиментации и раннего диагенеза от конти пента к центру бассейнов.

Действительно, увеличение роли S32 в пиритах глин и карбонатов на фациальном профиле гумидных и аридных бассейнов происходит параллельно уменьшению отношений $S_{\text{сульф}}/S_{\text{пир}}$ и Fe_2O_3/FeO , т.е. коррелирует с ростом восстановленности осадков (рис. 2). На профиле современных внутриматериковых водоемов восстановленность осадков растет к центру бассейна (°). Граница восстановленной зоны, находясь глубоко в осалке в континентальных отложениях, практически выходит на самую поверхность в центральных частях моря. На примере осадков Черного моря (7) было показано, что степень фракционирования изотопов серы зависит в значительной мере именно от мощности окисленного слоя, поскольку с этим фактором связано количество сульфатов, поступающих в сферу действия сульфатредуцирующих бактерий. Важно отметить, что, рассматривая данные по Черному морю (7-9), а также по осадкам и взвесям южных рек $(^{40})$, мы получили картину (рис. 3), совершенно аналогичную изменениям на фациальном профиле изотопного состава сульфидной серы, отношений $S_{\rm сульф}/S_{\rm пир}$ и Fe^{3+}/Fe^{2+} в древних отложениях Русской платформы. Сопоставление этих данных позволяет сделать заключение, что основные закономерности в формировании изотопного состава восстановленных форм серы в фанерозое были близкими к тем, которые отмечаются в современных бассейнах.

Изотопный состав сульфатной серы указывает на его зависимость не только от климатических и фациальных условий, но и от литологического типа пород. В терригенных породах гумидной зоны сульфаты характеризуются практически тем же изотопным составом, что и пирит, что свидетельствует об их образовании в результате вторичного окисления сульфидов. В карбонатных породах гумидных областей сульфатная сера уже отличается от серы пиритов большим содержанием изотопа S³⁴. Это говорит о добавке сульфата морской воды к продуктам окисления сульфидов. В связи с этим можно напомнить, что в современных карбонатных илах отмечалось бногенное накопление сульфата морской воды в раковинах фораминифер (11).

В терригенных породах аридных зон сульфат, осажденный из морской воды, играет еще более заметную роль. Максимальное же влияние морского сульфата, извлекаемого в осадок, проявляется в аридных карбонатах. При этом изотопный состав сульфата существенным образом зависит от фациальной природы осадка и, в конечном счете, от степени засолонения бассейна, о чем можно судить по увеличению концентрации в осадке компонентов, характерных для морской воды (Mg, Cl, SO₄²⁻ и т. д.). Именно поэтому изменение изотопного состава сульфатной серы коррелирует в аридных породах с концентрациями в них сульфата (рис. 4).

Органическая сера фаперозойских пород Русской платформы содержит больше изотопа S³², чем морские сульфаты, но все же не столько, сколько сера пирита. Согласно исследованиям ряда авторов (¹², ¹³), сера растепий и животных близка по изотопному составу к сульфату вод, в которых они обитают, отличаясь небольшим обогащением изотопом S³². В то же время органическая сера современных илов отличается от пиритной несколько большим содержанием S³⁴ (⁶, ¹²). Не исключено поэтому, что в формировании изотопного состава органической серы фаперозойских пород, как и в осадках современных, определенную роль играла сера остаточного органического вещества. В пользу этого предположения говорит намечающаяся тепденция к утяжелению изотопного состава S_{орг}, как бы повторяющая изменение сульфатов вод от более легких на континентах к более тяжелым в пормальной морской воде. Однако возможно, что утяжеление изотопного состава S_{орг} обусловлено и другим — различной динамикой образования продуктов свободного сероводорода.

Данные по среднему изотопному составу различных генетических типов глинистых и карбонатных пород Русской платформы (табл. 1), с учетом анализов рифейско-вендских глинистых толш, разновозрастных суль-

Показатель	Пески и алевриты	Глины	Карбо- наты	Эвапори- ты	Эффузи- вы	Осад. чехол Русской ил.
Масса пород, 10 ¹⁸ г Масса S _{пир} , 10 ¹⁸ г	6490 13,0	7683 34,5	8218 17,2	1296	153 0,2	23840 61.9
$\delta S_{\Pi\Pi p}^{34}, \ ^{0}/_{00}$	-6,0	-12,7	-14,3		?	$\begin{bmatrix} 01, 3 \\ -11, 7 \end{bmatrix}$
Масса $S_{\text{сульф}}$, 10^{18} г $\delta S_{\text{сульф}}^{34}$, $^{0}/_{00}$	$^{14,9}_{+5,9}$	18,4 0,8	87,9 +18,5	136,5 +13,1	_	$257,7 \\ +13,5$
Масса S _{общ} , 10 ¹³ г	27,9	49,9	105,1	136,5	0,2	319,6
δS_{00m}^{34} , $^{0}/_{00}$	$\div 0.4$	8,3	+43,0	+13,1	3	$\pm 8,5$

^{*} Данные по массам пород Русской платформы и содержаниям сульфатной и пиритпой серы в них заимствованы из работ (14, 15).

фатов (паши и литературные данные) и анализов сложносмещанной пробы песчано-алевритовых толщ региона позволили рассмотреть баланс изотопов и средний изотопный состав серы всего осадочного чехла Русской платформы. Результаты представлены в табл. 2. Они позволяют сделать вывод о существенном различии по изотопному составу серы пород разпотипа и о значительном обогащении всей осадочной толщи илатформы тяжелым изотопом S^{34} ($\delta S^{34} = +8.5\%$). В значительной мере это определяется широким развитием эвапоритовых толщ и рассеянных сульфатов в илатформенных образованиях. Поэтому эти данные следует рассматривать как характеристику осадочного чехла только платформенного типа.

Институт геохимии и аналитической химии им. В. И. Вернадского Академии наук СССР Москва Поступило 19 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Тод, Я. Монстер, Сборн. Химия земной коры, «Наука», 2, 1964, стр. 589.
² W. Т. Ноlser, І. R. Карlan, Chem. Geol., 1, 93 (1960).
³ W. U. Анlt, Л. L. Киlр, Geochim. et cosmochim. acta, 16, 201 (1959).
⁴ Н. А. Еременко, Р. Г. Панкина, Геохимия, № 1, 81 (1971).
⁵ А. Б. Ронов, А. А. Мигдисов, В. Е. Хаин, Литол. и полезн. ископ., № 1, 3 (1971).
⁶ Н. М. Страхов, Основы теории литогенеза, «Наука», 2, 1960.
⁷ А. Н. Виноградов, В. А. Грипенко, В. И. Устинов, Геохимия, № 10, 851 (1960).
⁸ Н. М. Страхов, В сборн. Современные осадки морей и океанов, Изд. АН СССР, 1961.
⁹ И. И. Волков, Э. А. Остроумов, В сборн. Современные осадки морей и океанов, Изд. АН СССР, 1961.
¹⁰ А. Л. Рабинович, Автореф. кандидатской диссертации, Новочеркасск, 1971.
¹¹ Э. А. Остроумов, И. И. Волков, Тр. инст. Океанологии, 83, 67 (1967).
¹² І. К. Кар-1ап, К. Е. Емегу, S. С. Rittenberg, Geochim. et соsmochim. acta, 27, № 4, 297 (1963).
¹³ В. Л. Мехтисва, Р. Г. Панкина, Геохимия, № 6, 739 (1968).
¹⁴ А. Б. Ронов, А. А. Мигдисов, Н. В. Барская, Литол. и полези. ископ., № 6, 3 (1969).
¹⁵ А. Б. Ронов, А. А. Мигдисов, Н. В. Барская, Литол. и полези. ископ., № 6, 3 (1969).
¹⁶ А. Б. Ронов, А. А. Мигдисов, Н. В. Барская, Литол. и полези. ископ., № 6, 3 (1969).