УДК 547.021:541.63

ХИМИЯ

А. С. ГУДКОВА, Э. И. ТРОЯНСКИЙ, академик О. А. РЕУТОВ

НЕКОТОРЫЕ РЕАКЦИИ 1-ГАЛОГЕНПРОПАНОЛОВ-2 И 2-ГАЛОГЕНПРОПАНОЛОВ-1

В продолжение работ по исследованию путей стабилизации β-оксиалкилкарбониевых ионов (I) нами изучено взаимодействие 1-галогеппропанолов-2 (Ia, б) и 2-галогенпропанолов-1 (IIa, б) с ацетатом калия. Интересно было проследить влияние способа образования соответствующего карбкатиона на его реакционную способность. В работе (²) указано, что при взаимодействии 1-хлорпропанол-2 с ацетатом калия образуется лишь 1-ацетоксипропанол-2 (IIIa), в то время как по данным Айзакса (³) аналогичная реакция с ацетатом натрия приводит к смеси 1-ацетоксипропанола-2 (IIIa) и 2-ацетоксипропанола-1 (IIIб), причем второго изомера образуется до 10%. В последнем случае (³) условия проведения реакции, общий выход и константы образующихся веществ не указаны.

Мы изучили реакцию 1-галогенпропанолов-2 и 2-галогенпропанолов-1 с ацетатом калия при 120° и обнаружили методом г.ж.х., что в реакционной смеси, наряду с изомерными ацетоксипропанолами (IIIa, б) присутствуют 1,2-диацетоксипропан (IV), пропиленгликоль (V) и исходные галогенгидрины (Ia, б — IIa, б) (см. табл. 1).

Таблица 1 Взаимодействие галогенгидринов с ацетатом калия

Исходный галогенгидрин	IIIa	1116	IV	v	Ι a, δ ΙΙ a, δ	Степень
	в мольн. долях					перегруппир.
Ia. 1-хлорпропанол-2 II. 2-хлорпропанол-4 Iб. 1-бромпропапол-2 IIб. 2-бромпропанол-1	46,3 47,0 59,6 59,2	29,3 29,5 35,5 36,2	19,2 17,6 2,9 4,6	2,3 3,6 —	2,9 2,3 2,0 —	40,0 57,1 37,7 61,5

С точки зрения путей стабилизации карбкатионов, которые могут явиться промежуточными частицами в данных реакциях, IIIа представляет собой нормальный продукт замещения, а IIIб— аномальный продукт реакции в случае Ia, б. Для IIa, б неперегруппированным продуктом реакции является IIIб, а перегруппированным— IIIa. IV и V, по-видимому, образуются в результате вторичных процессов по следующей схеме:

$$\label{eq:KOAc} \mbox{KOAc} + \mbox{CH}_3\mbox{CH}(\mbox{OH})\mbox{CH}_2\mbox{Hal} = \mbox{CH}_2\mbox{CH} - \mbox{CH}_2 + \mbox{KHal} + \mbox{AcOH}, \\ \mbox{O} \mb$$

$$\label{eq:chachest} \begin{split} \text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{OAc} + \text{AcOH} = &\text{CH}_3\text{CH}(\text{OAc})\text{CH}_2\text{OAc} + \text{H}_2\text{O},\\ \text{CH}_3\text{CH}(\text{OAc})\text{CH}_2\text{OH} + \text{AcOH} = &\text{CH}_3\text{CH}(\text{OAc})\text{CH}_2\text{OAc} + \text{H}_2\text{O},\\ \text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{Hal} + \text{H}_2\text{O} + \text{KOAc} = &\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{OH} + \text{KHal} + \text{AcOH}. \end{split}$$

Практически одинаковое соотношение первичных продуктов реакции (IIIa, IIIб) в каждом случае позволяет предположить образование одинакового промежуточного соединения. Мы полагаем, что таким промежуточным соединением является окись пропилена, а наблюдаемые продукты

реакции образуются в результате нуклеофильного раскрытия этой окиси по моно- и бимолекулярному механизму:

$$\label{eq:charge} \begin{split} \text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{Hal} &\to [\text{CH}_3\text{CH}(\text{OH})\overset{+}{\text{CH}_2}] & \text{CH}_3\text{CH}(\text{OAc})\text{CH}_2\text{OH} \\ & & \text{S}_{\text{N}^1} \\ & & \text{CH}_3\text{CH}-\text{CH}_2] \\ & & \text{CH}_3\text{CH}+\text{CH}_2\text{OH} &\to [\text{CH}_3\overset{+}{\text{CH}}\text{CH}_2\text{OH}] & \text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{OAc}. \end{split}$$

Поскольку в реакционной смеси никогда не была зафиксирована окись пропилена (метод г.ж.х.), то мы полагаем, что в реакционной среде она присутствует лишь в протонированной форме (3).

Для подтверждения обсуждаемой гипотезы было изучено взаимодействие окиси пропилена с уксусной кислотой в условиях реакции галогенгидринов с ацетатом калия. По данным г.ж.х., состав реакционной смеси близок к указанному в табл. 1 (в м.д.): 51,3 IIIa, 30,3 IIIб и 18,4 IV *. Специальными опытами показано, что IV образуется в результате этерификации моноацетатов пропиленгликоля (IIIa, б), причем избирательность для этерификации первичной или вторичной гидроксильной группы отсутствует. С учетом сказанного степень перегруппировки с 1,2-миграцией гидроксильной группы (см. табл. 1) определяли по формуле (n+1/2n') / $\sum n_i$ 100 мол.%, где n и n' — мольные доли перегруппирован-

ного моноацетата (IIIa или IIIб) и IV соответственно, а $\sum n_i$ — приведенная сумма всех образующихся продуктов реакции.

С целью фиксации других возможных продуктов реакции проведен ряд опытов в запаянной ампуле с последующей экстракцией реакционной смеси бутиловым или этиловым спиртом. По данным г.ж.х., в реакционной смеси отсутствует аллиловый спирт, пропионовый альдегид и ацетон, т. е. стабилизация промежуточного соединения путем элиминирования протона или миграции метильной группы не происходит.

Большинство исходных соединений и эталонов для анализа г.ж.х. получены по известным методикам: 1-хлорпропанол-2 (4), 2-хлорпропанол-1 (5), по аналогии), 2-бромпропанол-1 (5), по аналогии) и 1,2-диацетоксипропан (6).

- $\hat{1}$ Бромпропанол 2 получен восстановлением бромацетона боргидридом натрия в спирте. Выход 20%. Т. кип. $60-63^\circ/25-26$ мм; n_D^{21} 1,4790. Лит. данные (7): т. кип. $62-62,2^\circ/26$ мм; n_D^{20} 1,4762.
- 1 Ацетоксипропанол 2 получен восстановлением ацетолацетата (8) боргидридом натрия в спирте. Выход 5,8 г (71%). Т. кип. 77— $78^{\circ}/11$ мм; n_D^{18} 1, 4198. По данным анализа г.ж.х. в образце содержится до 10% пропиленгликоля. Лит. данные (4): т. кип. $182-183^{\circ}$; n_D 1,4197.
- 2 Ацетоксипропанол 1 получен восстановлением α -ацетоксипропаналя (°) боргидридом натрия в спирте. Выход 25%. Т. кип. 76— 78°/10 мм; n_D^{21} 1,4207. Лит. данные (°): т. кип. 80—81°/11—12 мм; n_D^{18} 1,4228.

Методика реакции галогенпропанолов с ацетатом калия. Смесь 0,01 моля прокаленного ацетата калия и 0,01 моля галоген-

^{*} По данным (3), взаимодействие окиси пропилена с 10—20-кратным избытком уксусной кислоты приводит к следующим результатам:

Система	Т-ра реакции, °С	IIIa	III6
Окись пропилена и АсОН Окись пропилена, АсОН и АсОNa	30 100	70 67 80	30 71 20

гидрина нагревали на масляной бане при 120° в течение 10 час. Продукты реакции либо отгоняли в вакууме, либо экстрагировали эфиром и затем экстракт упаривали до 1 мл. Независимо от метода обработки реакционной смеси по данным г.ж.х. получены одинаковые результаты (см. табл. 1).

Взаимодействие окиси пропилена с уксусной кислотой. Эквимолекулярные количества окиси пропилена и уксусной кислоты выдерживали при 120° в течение 10 час. в запаянной ампуле и затем под-

вергали анализу г.ж.х.

Г.ж.х. а нализ реакционных смесей осуществляли на хроматографе ЛХМ 8М. Детектор — пламенно-ионизационный. Газ-носитель — азот. Размеры колонки $240 \text{ см} \times 2.5 \text{ мм}$. Носитель — целит (85-100 меш), жидкая фаза — ПЭГ 20000 (5%). Температура колонки 400° , давление азота 1.2 атм, скорость газа-носителя 45 мл/мин. Количественный расчет состава реакционных смесей проводили по методу нормализации площадей. По-иравочные коэффициенты определяли по отношению к 1.2-диацетоксипронану. Для расчета в мольных долях вводили поправочные коэффициенты с учетом молекулярных масс: K'=1.3 для изомерных ацетоксипропанолов, 2.10 для изомерных хлорпропанолов, 1.76 для изомерных бромпропанолов ч 2.10 для пропиленгликоля.

Московский государственный университет им. М. В. Ломоносова

Поступило 14 XI 1972

ПИТИБОВАННАЯ ПИТЕРАТУРА

¹ О. А. Реутов, А. С. Гудкова и др., Изв. АН СССР, сер. хим., 1969, 2338.

² L. Henry, Res. trav. chim., Pays-Bas, 22, 331 (1903). ³ N. S. Isaaks, K. Neela-kantan, Canad. J. Chem., 46, 1043 (1968). ⁴ О. Ю. Магидсон, В. М. Федосова, Мед. пром. СССР, 3, 25, 1957. ⁵ R. F. Nystrom, J. Am. Chem. Soc., 81, 610 (1959). ⁶ A. Olsen, Zs. Naturforsch., 1, 681 (1946). ⁷ C. A. Stewart, J. Am. Chem. Soc., 76, 1259 (1951). ⁸ J. Nef, Ann., 335, 262 (1904). ⁹ A. Pujo, J. Boileau, C. Frejacques, Bull. Soc. chim. France, 1955, 974.

8 ДАН, т. 210, № 4