УДК 517.535

MATEMATHKA

С. И. ИБРАГИМОВ

О ПОЛНОТЕ НЕКОТОРЫХ СИСТЕМ АНАЛИТИЧЕСКИХ В КОЛЬЦЕ ФУНКЦИЙ

(Представлено академиком В. С. Владимировым 31 VIII 1972)

Обозначим через K(r,R) кольцо r < |z| < R, а через A(K) — пространство функции, аналитических в кольце K(r,R).

Система функций $\{\varphi_n(z)\}_{n=-\infty}^{\infty}$, $\varphi_n(z) \in K(r,R)$, называется полной в кольце K(r,R), если любая из функций $f(z) \in A(K)$ может быть приближена с любой наперед заданной степенью точности линейной комбинацией функций данной системы $\{\varphi_n(z)\}$, т. е. имеем

$$\inf_{(\lambda)} \max_{z \in K} \left| f(z) - \sum_{j=-n}^{n} \lambda_{j} \varphi_{j}(z) \right| = 0.$$

Известно, что любую функцию $f(z) \in A(K)$ можно единственным образом представить в виде ряда Лорана:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n.$$

Это свидетельствует о том, что система функций $\{z^n\}_{n=-\infty}^{\infty}$ образует базис и, следовательно, полна в любом конечном кольце K(r,R).

Пусть $\{\phi_n(z)\}_{n=-\infty}^{\infty}$ и $\{\psi_n(z)\}_{n=-\infty}^{\infty}$ — две системы функций, аналитических в кольце K(r,R), причем первая из этих систем полна в данном кольце K(r,R). В дальнейшем мы воспользуемся следующим критерием полноты: если каждая функция системы $\{\phi_n(z)\}$ может быть приближена с любой наперед заданной степенью точности линейной комбинацией функций $\{\psi_n(z)\}$, т. е.

$$\inf_{(\lambda)} \max_{z \in \overline{K}} \left| \varphi_n(z) - \sum_{j=-p_n}^{p_n} \lambda_{j,n} \psi_j(z) \right| = 0,$$

то система $\{\psi_n(z)\}$ также полна в кольце K(r,R).

 ${
m T}$ е о р е м а ${
m A}$. Пусть функция F(z,u) определяется как

$$F(z,u) = \sum_{n=-\infty}^{\infty} \varphi_n(z) u^n \tag{1}$$

при условии, что ряд (1) сходится равномерно по каждому переменному в кольце K(r,R), где $r<1,\ R>1,$ при любом фиксированном значении другого переменного также из кольца K(r,R). Кроме того заданная система $\{\psi_n(z)\},\ \psi_n(z)\equiv A(K),$ полна в кольце K(r,R).

Тогда для полноты системы функций

$$\Phi_n(z) = \frac{1}{2\pi i} \int_{|t|=1} \psi_n(t) F(z,t) dt, \quad n = 0, \pm 1, \pm 2, \dots,$$
 (2)

в кольце K(r,R) необходимо и достаточно, чтобы система функций $\{\varphi_n(z)\}, \varphi_n(z) \in A(K),$ была полной в кольце K(r,R).

Доказательство. В силу единственности ряда Лорана, ряд (1) будет рядом Лорана функции F(z,u) по переменному u при фиксирован-

ном г и имеют место формулы

$$\varphi_n(z) = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{1}{t^{n+1}} F(z,t) dt, \quad n = 0, \pm 1, \pm 2, \ldots,$$
 (3)

причем удобно полагать, что γ — единичная окружность |t|=1.

Пусть система функций $\{\Phi_n(z)\}$, $\Phi_n(z) \in A(K)$, полна в кольце K(r,R). В силу аналитичности функций $\psi_n(t)$, $n=0,\pm 1,\pm 2,\ldots$, на окружности |t|=1 и в силу полноты системы t^n , $n=0,\pm 1,\pm 2,\ldots$, во всем кольце K(r,R), при |t|=1 имеем

$$\psi_n\left(t\right) = \sum_{k=-m_n}^{m_n} A_{n,k} t^{k+1} + \varepsilon_{m_n}(t).$$

Подставив выражение $\psi_n(t)$ в формулу (1) и имея в виду (3), получим равенство

$$\Phi_{n}(z) = \sum_{k=-m_{n}}^{m_{n}} A_{n,k} \varphi_{k}(z) + \delta_{m_{n}}, \qquad (4)$$

где $|\delta_{m_n}| < \varepsilon$ и $\varepsilon > 0$ — сколь угодно малое число.

Из равенства (4) следует, что система функций $\{\phi_n(z)\}$ полна в том же кольце K(r,R), в котором полна система $\{\Phi_n(z)\}$. Необходимость доказана.

Предположим теперь, что система $\{\varphi_n(z)\}$ полна в кольце K(r,R). В силу аналитичности t^n , $n=0,\pm 1,\ldots$, на окружности $\lfloor t \rfloor =1$ и в силу полноты системы $\{\psi_n(z)\}$ во всем кольце K(r,R), имеем

$$\frac{1}{t^{n+1}} = \sum_{k=-p_n}^{p_n} B_{n,k} \psi_k(t) - \varepsilon_{p_n}(t).$$

Подставив выражение t^n , $n=0,\pm 1,\pm 2,\ldots$, в формулу (3) и имея в виду равенство (2), получим

$$\varphi_n(z) = \sum_{k=-p_n}^{p_n} B_{n,k} \Phi_k(z) + \delta_{p_n}, \quad n = 0, \pm 1, \pm 2, \dots,$$

при любом z из кольца K(r,R), где $|\delta_{p_n}| < \varepsilon_1$ и $\varepsilon_1 > 0$ —сколь угодно малое число. Последнее показывает, что система $\{\phi_n(z)\}$ полна там, где полна система $\{\Phi_k(z)\}$. Достаточность также доказана. Рассмотрим несколько частных случаев:

1) Пусть $\{v_n\}_{n=-\infty}^{\infty}$ — подпоследовательность целых чисел такая, что $\phi_{v_n}(z) \equiv 0, \ n=0,\pm 1,\pm 2,\dots$ Положим $\{\lambda_n\}_{-\infty}^{\infty} = \{n\}_{-\infty}^{\infty} \setminus \{v_n\}_{-\infty}^{\infty}$. В этом случае можно говорить о полноте системы функций $\{\Phi_n(z)\}$ в некоторой области (D), являющейся частью кольца K(r,R), т. е. справедливо

Спедствие 1. Если функция $F(z,u)=\sum_{n=-\infty}^{\infty}\phi_{\lambda_n}(z)u^{\lambda_n}$ аналитическая по каждому переменному в кольце K(r,R), то для полноты системы $\{\Phi_n(z)\}$ в области $D \subseteq K(r,R)$ необходима и достаточна полнота системы $\{\phi_{\lambda_n}(z)\}_{-\infty}^{\infty}$ в той же области $D \subseteq K(r,R)$.

2) Пусть функция $F(z,u)=\sum_{n=0}^\infty \varphi_n(z)u^n$ аналитическая по u в круге |u|< R при каждом z из кольца K(r,R). В этом случае из теоремы 1 вытекает

Следствие 2. Если $F(z,u) = \sum_{n=0}^{\infty} \varphi_n(z) u^n$ — аналитическая функция по и в круге |u| < R и аналитическая по z в кольце K(r,R), то для полноты системы функций $\{\Phi_n(z)\}$ в кольце K(r,R) необходима и достаточна полнота системы $\{\varphi_n(z)\}_0^{\infty}$ в том же кольце K(r,R).

3) Положим
$$\psi_n(z) = \frac{1}{(z-\alpha_n)}$$
, где $|\alpha_n| < 1$ и ряд $\sum_{n=0}^{\infty} (1-|\alpha_n|)$

расходится. Известно, что система функций $\left\{\frac{1}{z-\alpha_n}\right\}$ полна в области $|z| \ge 1$ (см. (¹), стр. 277—280). В этом случае из равенства (2) находим $\Phi_n(z) = F(z,\alpha_n), \ n=0,1,\ldots,$ и из теоремы 1 вытекает

Следствие 3. Пусть $F(z,u) = \sum_{n=0}^{\infty} \varphi_n(z) u^n$ — аналитическая функция по каждому из переменных u, z в круге |u| < R при фиксированном значении другого переменного. Для полноты системы функций $\{F(z, \alpha_n)\}$ в круге |z| < R или в некоторой области (D), принадлежащей кругу |z| < R, необходима и достаточна полнота системы функций $\{\varphi_n(z)\}$ в круге |z| < R или в той же области (D).

Это утверждение является обобщением и уточнением теоремы И. И. Ибрагимова (2), где доказана достаточность условия.

4) Пусть теперь функция $f(z) = \sum_{-\infty}^{\infty} c_n z^n$ из пространства A(K) такова, что $c_n \neq 0, \ n=0, \ \pm 1, \ \pm 2, \dots$ Положим, что $\phi_n(z) = c_n z^n$. В этом случае $F(z,u) = \sum_{-\infty}^{\infty} c_n (zu)^n = f(zu)$ и справедливо

Спедствие 4. Пусть система функций $\{\psi_n(z)\}$ полна в кольце K(r,R) и $f(z) \in A(K)$. Тогда для полноты системы функций

$$\Phi_n^*(z) = \frac{1}{2\pi i} \int_{|t|=1} \psi_n(t) f(zt) dt, \quad n = 0, \pm 1, \ldots,$$

в кольце K(r,R) необходимо и достаточно, чтобы все коэффициенты Лорана функции f(z) были отличны от нуля.

В частности, пусть $\{v_n\}$ — некоторая подпоследовательность целых чисел и функция $f(z) \in A(K)$ такова, что $c_{v_n} = 0, n = 0, \pm 1, \pm 2, \dots$ В этом случае также можно говорить о полноте системы функций $\{\Phi_n^*(z)\}$ в некоторой области (D), являющейся частью кольца K(r,R), т. е. справедливо

Следствие 5. Если функция
$$f(z) = \sum_{n=-\infty}^{\infty} c_{\lambda_n} z^{\lambda_n}$$
, $z \partial e \ c_{\nu_n} = 0$, $n =$

 $=0,\pm 1,\ldots, u \ \{\lambda_n\}=\{n\}\setminus \{v_n\}$ принадлежит пространству A(K), то для полноты системы функций $\{\Phi_n^*(z)\}$ в области $(D)\subset K$ необходима и достаточна полнота системы функций $\{z^{\lambda_n}\}$ в той же области D.

В частности, положим, что f(z) — апалитическая функция в круге |z| < R, т. е. $c_n = 0$, $n = -1, -2, \ldots$ Положим, что f(z) такова, что еще и $c_{v_n} = 0$, $n = 0, 1, 2, \ldots$, где $\{v_n\}$ — некоторая подпоследовательность натуральных чисел. В этом случае из последнего утверждения вытекает

Спедствие 6. Если $f(z)=\sum_{n=0}^{\infty}c_{\lambda_n}z^{\lambda_n}$ \in A(|z|< R), где $c_{\nu_n}=0$ и $\{\lambda_n\}_0^{\infty}=\{n\}_0^{\infty}\setminus\{\nu_n\}_0^{\infty}$, и система $\{\psi_n(z)\}$ полна в кольце K(r,R), то для

полноты системы функций

$$\Phi_n^*(z) = \frac{1}{2\pi i} \int_{|t|=1} \psi_n(t) f(zt) dt$$

в области $D \in (|z| < R)$ необходима и достаточна полнота системы $\{z^{\lambda_n}\}$ в области Д.

Доказательство достаточности этого утверждения, в случае $\lambda_n=n,\ n=1$ $= 0, 1, 2, \ldots$, принадлежит И. Ф. Лохину (3).

В качестве примера рассмотрим случай, когда $\psi_n(z) = 1/(z-\alpha_n)$,

$$|\alpha_n| < 1, \, n = 0, \, 1, \, 2, \ldots, \,$$
и ряд $\sum_{n=0} (1 - |\alpha_n|)$ расходится. Во-первых, по-

ложим, что F(z, u) — аналитическая функция по z в кольце K(r, R) и аналитическая по u в круге |u| < R. В этом случае в силу (3) функции $\varphi_n(z)$ имеют вид

$$\varphi_n(z) = \frac{1}{2\pi i} \int_{|t|=1}^{\infty} \frac{F(z,t) dt}{t^{n+1}} = \frac{\partial^n F(z,t)}{\partial t^n} \Big|_{t=0}.$$

В то же время, в силу (2), имеем

$$\Phi_n(z) = \frac{1}{2\pi i} \int_{|t|=1}^{\infty} \frac{F(z,t) dt}{t - \alpha_n} = F(z,\alpha_n).$$

Таким образом, справедливо

Следствие 7. Пусть функция F(z, u) аналитическая по z в кольце K(r, R) и аналитическая по u в круге |u| < R. Кроме того, последователь-

ность комплексных чисел $\{\alpha_n\}$, где $|\alpha_n| < 1$, такова, что ряд $\sum\limits_{n=0}^{\infty} (1-|\alpha_n|)$

расходится.

. Tогда для полноты системы последовательных производных $\left\{ \left. \frac{\partial^n F\left(z,t\right)}{\partial t^n} \right|_{t=0} \right\}$ в кольце $K(r,\,R)$, необходимо и достаточно, чтобы система $\{F(z,\alpha_n)\}$ была полна в кольце K(r,R) .

В частности, положим, что $\dot{F}(z,u)=f(z+u)$, причем f(z) — аналитическая функция из класса A(|z|<1+R). Легко заметить, что в этом случае функции $\phi_n(z)$ имеют вид $\phi_n(z)=f^{(n)}(z),\ n=0,\ 1,\ldots,\$ и $\Phi_n(z)=$ $=f(z+\alpha_n),\, n=0,1,2,\ldots$, т. е. справедливо (см. (4)). Следствие 8. Пусть $f(z) \in A(|z| \leqslant R+1)$ и $\{\alpha_n\}$ — последователь-

ность комплексных чисел, причем $|\alpha_n| < 1$ и ряд $\sum (1 - |\alpha_n|)$ расходится.

Тогда для полноты системы функций $\{f^{(n)}(z)\}$ в круге |z| < R необходимо и достаточно, чтобы система функций $\{f(z+\alpha_n)\}$ была полна в круге |z| < R.

Институт кибернетики Академии наук АзербССР Баку

Поступило 28 VIII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. И. Ахиезер, Лекции по теории анпроксимации, «Наука», 1965, стр. 1. ² И. И. Ибрагимов, Изв. АН СССР, сер. матем., 13, 45 (1949). ³ И. Ф. Лохин, Уч. зап. Горьковск. унив., 28, 24 (1955). ⁴ Ю. А. Казьмин, УМН, 12, № 2 (74), **151** (1957).