УДК 548.736

КРИСТАЛЛОГРАФИЯ

Ю. К. КАБАЛОВ, М. А. СИМОНОВ, О. В. ЯКУБОВИЧ, Н. А. ЯМНОВА, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СИНТЕТИЧЕСКОГО Fe(Zn)-CAPKOIIСИДА (Fe, Zn)₃[PO₄]₂

Исследованные кристаллы получены в лаборатории гидротермального синтеза Института кристаллографии АН СССР О. К. Мельниковым при изучении кристаллизации в системе $ZnO-NH_4Cl-(NH_4)_2HPO_4-H_2O$.

Кристаллы бесцветны или окрашены в желтоватый цвет, прозрачны, хорошо огранены, размер вдоль удлинения до 3-4 мм. Пересчет химического анализа (%): ZnO 12,84, Fe₂O₃ 47,52, P₂O₅ 39,05, CuO 1, $\Sigma=100,41$ позволил принять на первом этапе исследования в качестве химической формулы 2Fe₂O₃·2Pe₂O₅·2nO. Анализ порошкограммы (табл. 1) и параметров элементарной ячейки * ($a=10,404\pm0,004,\ b=4,771\pm0,003,\ c=6,006\pm0,004$ Å, $\beta=91^{\circ}07'$) выявил аналогию изученного соединения с природным фосфатом — саркопсидом (1).

При удельном весе d=3.82 г/см 3 в ячейке содержится Z=1 единица

 $2Fe_2O_3 \cdot 2P_2O_5 \cdot ZnO$.

Основной экспериментальный материал при расшифровке структуры дали 580 отражений с вейсенбергограмм h0l-h3l ($\max\frac{\sin\theta}{\lambda}=1,16$ Å⁻¹, λ Mo).

Таблица 1 Межилоскостные расстояния

Природный саркоп- сид (1)		(Fe _{0,76} Zn _{0,24}) , [PO ₄] ₂		Природный саркоп- сид (¹)		(Fe _{0,76} Zn _{0,24}), [PO ₄] ₂	
I	d	I	d	I	d	I	d .
50 20 30 40 15 80 100 50 10 30 25 20 15 10	6,06 5,24 4,37 3,95 3,76 3,54 3,03 2,819 2,610 2,558 2,486 2,400 2,340 2,340 2,340 2,180	10 30 50 80 80 100 70 60 20 10 20 20	6,16 4,34 3,91 3,526 3,018 2,810 2,564 2,485 2,377 2,332 2,290 2,181	15 5 20 20 5 10 10 10 10 5 10 10	2,047 1,885 1,833 1,769 1,744 1,694 1,601 1,579 1,544 1,529 1,513 1,450 1,425 1,513 1,361	20 10 30 60 50 40 20 10 50	2,050 1,875 1,825 1,765 1,685 1,645 1,604 1,523 1,504

II римечание. Наши данные получены на дифрактометре УРС-50 ИМ. λ Си, фильтр Ni, сцинтилляционный счетчик.

Интенсивности рефлексов оценены по стандартной шкале почернения $2^{1/4}$. Систематические погасания на развертках слоевых линий однозначно фиксируют федоровскую группу $C_{2h}{}^5 = P2_1/a$. Отрицательный результат испытаний на пьезоэффект (Физфак МГУ) также был в пользу выбранной группы симметрии.

^{*} Определены в камере РКОП с последующим уточнением на дифрактометре ДРОН-1, λ Мо, K_{α} -излучение.

Структура этого фосфата определена методом тяжелого атома. Координаты относительно тяжелых Fe(Zn) установлены из патерсоновской функции P(uvw). Более легкие P и O локализованы циклом последовательных трехмерных синтезов электронной плотности $\rho(xyz)$; при этом фактор расходимости R_{hkl} снижался от 38,82% с учетом двух независимых Fe(Zn) до 22,5% с добавлением фосфора и всех четырех атомов O.

Баланс валентных усилий для скомпанованной модели структуры удовлетворительный в предположении, что Fe двухвалентно. Пересчет химического анализа на Fe^{2+} приводит к формуле $(Fe_{0,76}Zn_{0,24})_3[PO_4]_2$, хорошо

Таблица 2 Координаты базисных атомов в структуре ($\mathrm{Fe}_{0.76}~Z_{\Pi_0.24}$)а [PO_4]2

Атом	x/a	y /b	c / z	B_j
$Fe (Zn)_{I}$ $Fe (Zn)_{II}$ P O_1 O_2 O_3 O_4	0 0,283 0,101 0,160 0,181 0,100 0,463	0 0,981 0,434 0,282 0,316 0,256 0,179	0 0,266 0,239 0,027 0,427 0,226 0,250	$\begin{array}{c} 0,34 \\ 0,09 \\ 0,07 \\ 0,17 \\ 0,55 \\ 0,51 \\ 0,44 \end{array}$

Таблица 3 Межатомные расстояния в структуре ($\mathrm{Fe_{0.76}Zn_{0.24}}$)з $\mathrm{[PO_4]_2, Å}$

10 01 0,00							
Fe(Zn) _I -октаэдр	Fe (Zn) _{II} -октаэдр	Р-тетраәдр					
Fe (Zn)— O_1 = 2,14 Fe(Zn)— O_3 = 2,09 Fe (Zn)— O_4 =2,18 Среднее 2,14 O_1 — O_3 **=2,90 O_1 — O_4 "=2,48 O_1 — O_4 "=3,55 O_1 — O_3 '=3,08 O_3 — O_4 '=3,10 O_3 — O_4 "=2,94 Среднее 3,01	Fe $(Zn) - O_1 = 2,39$ Fe $(Zn) - O_2 = 2,14$ Fe $(Zn) - O_3 = 2,22$ Fe $(Zn) - O_4 = 2,10$ Fe $(Zn) - O_1 = 2,08$ Fe $(Zn) - O_2 = 2,03$ Среднее $2,16$ $O_1 - O_1' = 3,05$ $O_1 - O_2 = 2,41$ $O_2 - O_2' = 2,91$ $O_1 - O_3 = 3,09$ $O_2 - O_4 = 3,21$ $O_1 - O_4 = 3,44$ $O_2' - O_4 = 3,02$ $O_1' - O_4 = 2,65$ $O_2' - O_3 = 3,08$ $O_1' - O_3 = 2,95$ $O_1' - O_2' = 3,62$ Среднее $3,03$	$P - O_1 = 1,59$ $P - O_2 = 1,51$ $P - O_3 = 1,56$ $P - O_4' = 1,53$ Среднее 1,55 $O_1 - O_2* = 2,41$ $O_1 - O_4' = 2,49$ $O_1 - O_3 = 2,63$ $O_2 - O_3 = 2,58$ $O_3 - O_4' = 2,56$ $O_1 - O_4'* = 2,48$ Среднее 2,53					

Примечание. Одной звездочкой отмечены общие ребра октаэдров и тетраэдров, двумя звездочками — общие ребра октаэдров.

согласующейся с полученной моделью. В элементарной ячейке указанных размеров число таких формульных единиц $(\text{Fe}_{0,76}\text{Zn}_{0,24})_3[\text{PO}_4]_2$ становится равным Z=2. Уменьшение фактора расходимости, рассчитанного в предположении о статистическом распределении Fe и Zn, до $R_{hhl}=18,15\%$ подтвердило объединение в одной позиции (в одной скобке) Zn и Fe²⁺.

Уточнение структурной модели методом наименьших квадратов (²) в Вычислительном центре МГУ на ЭВМ БЭСМ-4 по трехмерному набору

интенсивностей в изотрошном приближении снизило фактор расходимости до $R_{\rm hkl} = 11.56\,\%$.

Заключительные координаты базисных атомов и межатомные расстояния приведены в табл. 2 и 3.

В $[PO_4]$ -тетраэдрах межатомные расстояния соответствуют обычно встречающимся $P-O=1,55\,\text{Å};$ длины кислородных ребер P-тетраэдра

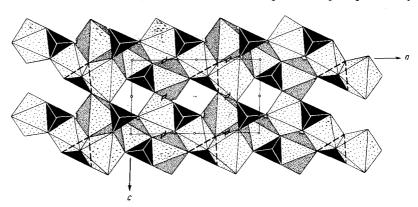


Рис. 1. Fe(Zn)-саркопсид (Fe, Zn)₃[PO₄]₂, XZ-проекция структуры

также не выходят из узких пределов. В Fe(Zn)-октаэдрах имеет место несколько больший разброс для ребер — их длин, что можно считать следствием общих ребер у P-тетраэдра сFe(Zn)-октаэдрами.

Структурный мотив Fe(Zn)-саркопсида наиболее четко выступает в базисной проекции XZ (рис. 1). Основу структуры составляет трехмерный каркас из Fe(Zn)-октаэдров, который построен по закону гексагональной плотнейшей упаковки. В диагональном направлении $\mathbf{a} + \mathbf{c}$ проекции XZ (рис. 1) хорошо видно чередование троек Fe(Zn)-октаэдров, сочленяющихся по общим ребрам и чередующихся на своем уровне (вдоль b) с пустыми. В выше- и нижележащих слоях гексагональной упаковки и также в направлении $\mathbf{a} + \mathbf{c}$ на уровнях $y = \pm 1/2$ имеем те же тройки Fe(Zn)-октаэдров, но смещенные по диагонали относительно Fe(Zn)-октаэдров нижнего (y = 0) слоя (заселены над и под пустыми и наоборот). Полости из Fe(Zn)-октаэдров можно считать посадочными площадками для $[PO_4]$ -тетраэдров.

Структурный мотив Fe(Zn)-саркопсида можно сравнить со структурным мотивом рутилового типа, если в колонках последнего каждый 4 октаэдр сделать пустым.

Ряд авторов (³), исходя из близости параметров элементарных ячеек саркопсида и оливина, предполагали, что они изоструктурны. Полученная нами структура синтетического саркопсида позволяет сказать, что полной аналогии между ними нет, хотя в структуре Fe(Zn)-саркопсида можно выделить геометрически подобные ленты оливинового типа, простирающиеся вдоль **c**, но только лишь подобные, поскольку в их стержнях каждый второй октаэдр пустой.

При подготовке рукописи авторы познакомились с только что вышедшей работой (4) по структуре минерала саркопсида $(Fe_{0.78}Mn_{0.21}Mg_{0.01})_3[PO_4]_2$. Близкие значения координат атомов и межатомных расстояний подтверждают отмеченную ранее (5) аналогию.

Московский государственный университет им. М. В. Ломоносова

Поступило 27 XII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. S. Hurlbut, Amer. Mineralogist, **50**, 1698 (1965). ² А. Б. Товбис, Б. М. Щедрин, Комплекс программ для решения задач структурного анализа кристаллов, ВЦ МГУ, М., 1968. ³ А. С. Поваренных, Кристаллохимическая классификация минеральных видов, Киев, 1966. ⁴ Р. В. Мооге, Amer. Mineralogist, **57**, 24 (1972). ⁵ Ю. К. Кабалов, О. К. Мельников и др., ДАН, **206**, № 3, 609 (1972).