УДК 541.515

ХИМИЯ

Н. Н. БУБНОВ, А. И. ПРОКОФЬЕВ, А. А. ВОЛОДЬКИН, И. С. БЕЛОСТОЦКАЯ, В. В. ЕРШОВ

РАДИКАЛЬНЫЕ ПАРЫ В РЕАКЦИЯХ ФОТОХИМИЧЕСКОГО ВОССТАНОВЛЕНИЯ ХИНОНОВ

(Представлено академиком М. И. Кабачником 30 Х 1972)

Изучение структуры и кинетических характеристик радикальных пар может дать дополнительную информацию о механизме реакций в конденсированной фазе. В литературе описаны случаи непосредственного наблюдения радикальных пар в твердой матрице методом э.п.р. при фотолизе и радиолизе органических соединений (¹). Однако до сих пор имели дело в основном с радикальными парами, образующимися лишь при диссоциации исходных молекул. Несомненный интерес представляют те случаи, когда радикальная пара возникает в результате переноса атома или электрона с одной молекулы на другую. Типичным процессом такого типа может служить фотовосстановление карбонильных соединений молекулами, которые могут выступать как доноры атома водорода или электрона (²). В этих случаях образуются соответственно «чистые» радикальные пары и пары ион-радикального типа.

В настоящей работе исследовано образование радикальных пар при фотохимическом восстановлении некоторых пространственно затрудненных хинонов: 2,6-ди-трет.-бутил-*п*-бензохинона (I) и 3,6-ди-трет.-бутил-*о*-бензохинона (II). В качестве доноров атома водорода были использованы пространственно затрудненные фенолы: 2,4,6-три-трет.-бутилфенол (III), 2,6-ди-трет.-бутил-4-метилфенол (IV), 2,6-ди-трет.-бутил-4-фенилфенол (V) и бис-(4-окси-3,5-ди-трет.-бутилфенил)-метан (VI). Донорами электрона служили диэтиламин (ДЭА) и триэтиламин (ТЭА).

Выбор этих объектов обусловлен прежде всего тем, что при облучении ультрафиолетовым светом вакуумированных растворов исследуемых хинонов и фенолов методом э.п.р. зарегистрированы радикалы, образующиеся при переносе атома водорода от фенола к хинону. Например, при облучении растворов II и IV в четыреххлористом углероде образуются соответствующие стабильные феноксильные радикалы, спектр э.п.р. которых приведен на рис. 1.

Наряду с известным спектром э.п.р. 2,6-ди-трет.-бутил-4-метилфеноксила, представляющего собой триплет квадруплетов, на рис. 1 присутствует также спектр 3,6-ди-трет.-бутил-4-оксифеноксила, состоящий из трех линий $(a_{\rm H}=3.92~{\rm rc})$, обусловленных взаимодействием неспаренного электрона с протонами кольца в положениях 4,5, которые, в свою очередь, расщеплены

на дублет ($a_{\rm H} = 1,62$ гс) за счет протона гидроксильной группы. Детали спектра э.п.р. этого радикала будут опубликованы в дальнейшем.

Одновременное присутствие радикалов, образующихся при переносе атома водорода от фенола к хинону в растворе, наблюдалось во всех исследуемых нами системах. В то же время при облучении растворов хинонов с аминами регистрировались только семихинонные анион-радикалы.

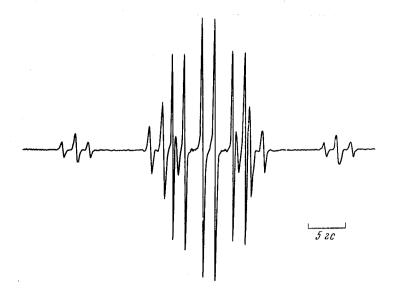


Рис. 1. Спектр э.п.р. раствора 2,6-ди-трет.-бутил-4-метилфенола и 3,6-ди-трет.-бутил-о-бензохинона в ССІ₄ под действием у.ф. облучения (30° C)

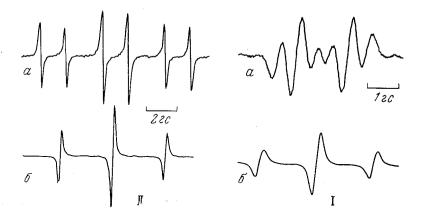


Рис. 2. Спектры э.п.р. феноксильных радикалов (а) и семихинонных анион-радикалов (б), образующихся при фотопереносе атома водорода и электрона соответственно на хиноны I и II

образующиеся при фотопереносе электрона с амина на хинон. С другой стороны, известно, что под действием ультрафиолетового облучения, вследствие отрыва электрона от аминов, возникают соответствующие катион-радикалы, относительно стабильные в твердой матрице (3). На рис. 2 для сравнения приведены спектры э.п.р. феноксильных радикалов и анионрадикалов семихинонов, образующихся при фотовосстановлении хинонов I и II.

Таблица 1 Параметры радикальных пар, образующихся при облучении замороженных растворов хинонов с фенолами и аминами

Система	Структура пары	T-pa, °C	Растворитель	D⊥, re	r _{ep} , Å
I + III	OH OH	—160 —160	Гептан Хлороформ	100 97,5	6,4 6,5
I + V	OH OH	160	Гептан	95	6,5
11 + 111	фон ф	-160 -100	ССl ₄ Бензол	112 112	6,3 6,3
II + IV	ОН СН ³	—160	CCl ₄	112	6,3
11 + VI	OH CH2	—160 —160	Толуол Вазелин	115 120	6,2 6,1
I + ДЭА	CH ₃ NCH ₃	—160	ДЭА	125	6,0
I + ТЭА	CH3NCH3	—160	ТЭА	130	5,9
II + ДЭА	O- CH3HCH3	100	ДЭА	95	6,5
II + ТЭА	CH ₃ NCH ₃	100	тэа	95	6,5

Полученные данные по облучению смесей хинонов и аминов в растворе позволили сделать предположение о возможности образования радикальных пар при проведении тех реакций В твердой фазе. Действительно, при облучении вакуумированных и замороженных растворов хинонов с фенолами и аминами (концентрация исходных реагентов составляла ~ 0.5 мол/л) были зарегистрированы спектры э.п.р., форма линий которых обусловлена спин-спиновым взаимодействием для пары радикалов, находящихся В «клетке» (рис. 3). Структура образующихся радикальных пар и их параметры приведены в табл. 1.

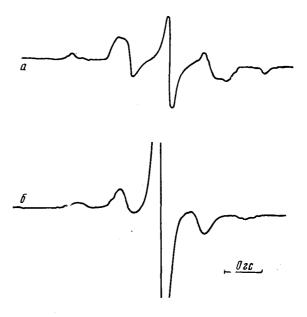


Рис. 3. Спектры э.п.р. радикальных пар в твердой фазе: $a-\mathrm{I}+\mathrm{T}\partial\mathrm{A},\ b-\mathrm{II}+\mathrm{VI}$

При повышении температуры спектр, отвечающий радикальной паре, исчезает. Так, в бензоле для системы II+III (см. табл. 1) время жизни пары в отсутствие облучения составляет ~ 3 мин. (-70°) и ~ 8 мин. (-100°) .

Таким образом, можно полагать, что обнаруженные в растворе радикалы при фотовосстановлении хинонов фенолами и аминами, образуются в радикальной паре в результате фотопереноса водорода (или электрона), и эти результаты находятся в согласии с данными работ Клосса и сотрудников (4,5), полученными методом химической индупированной поляризации ядер при фотовосстановлении ароматических кетонов и альдегидов.

В заключение авторы выражают благодарность Я. С. Лебедеву за об-

суждение результатов работы.

Институт элементоорганических соединений Академии наук СССР Поступило 30 X 1972

Институт химической физики Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Я. С. Лебедев, В. И. Муромцев, ЭПР и релаксация стабилизированных радикалов, М., 1972. ² А. Н. Теренин, Фотоника молекул красителей, «Наука», 1967, стр. 345. ³ G. N. Lewis, D. Lipkin, J. Am. Chem. Soc., 64, 2801 (1942). ⁴ G. L. Closs, L. E. Closs, J. Am. Chem. Soc., 91, 4550 (1969). ⁵ G. L. Closs, D. R. Paulson, J. Am. Chem. Soc., 92, 7229 (1970).