УДК 543.51+541.49

ХИМИЯ

Х. Ш. ХАРИТОН, Г. А. ПОПОВИЧ, ВКАДЕМИК АН МССР А. В. АБЛОВ О НЕКОТОРЫХ АНОМАЛИЯХ В МАСС-СПЕКТРАХ АЛКАНОАТОВ МЕЛИ (II)

Ранее нами было показано, что при нагревании в глубоком вакууме алканоаты меди (II) $[(RCOO)_4Cu_2]_n$, где $R=CH_3$ (I), C_2H_5 (II), μ - C_3H_7 (III), μ - C_4H_9 (VI), переходят в парообразное состояние без разложения, сохраняя степень окисления меди +2. Масс-спектрометрически доказано наличие димерного молекулярного иона $[(RCOO)_4Cu_2]^+$ и приведена схема основного направления фрагментации. В области высоких массовых чисел наблюдались слабоинтенсивные пики фрагментов, содержащих три и четыре атома меди. Были приведены лишь масс-спектры I-IV в области высоких массовых чисел (1).

Более подробный анализ масс-спектров I-IV (табл. 1), снятых в условиях, приведенных в (1), позволил уточнить элементарный состав понов и дополнить некоторые моменты фрагментации. Установлено наличие таких перегруппировочных процессов, как выброс молекулы CO_2 с миграцией радикала R к одному из атомов меди (переход $[(RCOO)Cu_2]^+ \rightarrow [RCu_2]^+$, отрыв C_2H_4 (III-IV) с миграцией водорода

Таблица 1 Масс-спектры алканоатов мели (П)

Ионы	I — ацетат		II—пропионат		III — н-бутират		IV — н-валерат	
	m/e*	отн. интен., %	m/e	отн. интен., %	m/e	отн. интен., %	m/e	отн. интен., %
(RCOO) ₃ Cu ₄	429	0,1						
(RCOO) ₅ Cu ₃	486	0,03		1		ļ ļ		
(RCOO)3Cu3	368	0,02	410	0,02	452	0.01		
(RCOO) ₂ Cu ₃	309	0,12	337	0,14	365	0,09	393	0,11
(RCOO) ₄ Cu ₂	362	0.04	418	0,03	474	0,01	003	} 0,11
(RCOO) ₃ Cu ₂	303	0,2	345	0,08	387	0,12	429	0,1
(RCOO) ₂ Cu ₂	244	79,8	272	39,4	300	58,6	328	37,6
(RCOO) ₂ Cu ₂ —H]	1		}	299	12,0	327	20,3
$(RCOO)_2Cu_2-R$	229	11,0	243	0,8	271	14,0	3	1 , 3
$(RCOO)_2Cu_2-28$	ſ		{	1 '	ĺ	1 1	30 0	3,0
$(RCOO)_2Cu_2-42$	1	}	Ì	1]]	286	3,5
(RCOO)Cu ₂	185	100	199	100	213	100	227	100
(RCOO) ₂ Cu	181	7,9	209	6,1	ľ			
$(RCOO)_2Cu-R$	166	40,9	180	26.7	194	$\begin{vmatrix} 2 \end{vmatrix}$		1
$(RCOO)_2Cu-2R$	151	10,4	151	67,1	151	11	151	5,3
$(RCOO)Cu_2-28$	1			1	185	16	19 9	5,3
(RCOO)Cu ₂ —44	141	15,5	155	4,0	169	10	183	6,0
(RCOO)Cu	122	40,3	136	20,0	150	7	164	9,8
(RCOO)Cu—H	ľ	1			149	6	163	24,8
(RCOO)Cu-17	}]	119	11,0	133	4	147	6,7
Cu₂H	400		127	9 8	127	8	127	16,5
Cu ₂	126	9,3	126		126	6	126	8,2
CuOCO	107	71,3	107	84	107	16	107	18,8
Cu	63	50,2	63	51	63	13	63	2 3,3

^{*} Указаны m/e наиболее интенсивного из изотопных пиков группы.

к атому меди, образование иона $[Cu_2H]^+$. В масс-спектрах I-IV наблюдаются пики двухатомного иона $[Cu_2]^+$, интенсивность которого достигает $6-10\,\%$. Во всех масс-спектрах алканоатов меди (II) имеются пики ионов, содержащих один атом металла.

При сравнении наших данных с масс-спектром ацетата меди (II), описанным в $(^2)$, было установлено, что в некоторых деталях спектры отличаются друг от друга. В полученном нами масс-спектре (I, табл. 1) зарегистрированы пики с конфигурацией, характерной для ионов, содержащих один атом меди, отвечающие значениям m/e 183—181 (3,7—7,9%), 168—166 (18.3—40,9%), 153—151 (4,6—10,4%), 124—122 (17,6—40,3%), 109—107 (32,4—71,3%), 65—63 (22,9—50,2%), что соответствует одноядерным фрагментам элементариого состава [(CH₃COO₂)Cu]⁺ (M), [M—CH₃]⁺, [M—2CH₃]⁺, [(CH₃COO) Cu¹]⁺, [Cu¹OCO]⁺ и [Cu¹]⁺ в то время как в $(^2)$ имеются лишь ники ионов с m/e 109—107 (6—14%) и 65—63 (8—20%). При этом пики фрагментов, содержащих два атома меди в сравниваемых масс-спектрах, совпадают как по значениям m/e, так и по интенсивности. При съемке масс-спектра I в режиме, приведенном в $(^2)$, это различие сохранилось. Таким образом, его нельзя отнести за счет разницы в условиях проведения эксперимента.

С целью выяснения причин указанного расхождения, нами были проведены съемки масс-спектров ацетата меди, полученного в разных условиях. Для этого ацетат меди (х.ч.) перекристаллизовывался из воды. Для съемки был взят сравнительно крупный монокристалл (Ia) и поликри-

Таблица 2 Масс-спектры ацетата меди (II), полученного в разных условиях

	,								
m/e	[Относительная интенсивность, %								
m, e	I	Ia	16	Ів	Ir	Ід			
248	16,6 73,1 79,8 2,0 10,1 11,0 20,0 87,4 100 3,7 7,9 18,3 40,9 4,6 10,4 1,8 9,0 11,1 5,8 17,1 15,5	16,8 76,4 84,8 2,0 8,7 10,1 19,9 89,9 100 6,0 14,1 31,3 4,4 8,4 1,7 8,4 10,1 5,7 16,2 14,8	15,0 66,0 72,9 1,5 7,5 8,8 20,6 90,5 100 6,9 14,7 38,2 79,1 9,8 22,2 1,8 10,4 13,1 6,5 18,9 17,3	15,0 66,6 74,7 2,0 9,3 10,4 20,1 91,6 100 5,5 12,1 28,2 63,0 8,1 18,3 10,3 12,8 6,6 19,0 17,2	16,8 77,7 85,3 2,1 9,6 10,9 19,7 89,1 100 4,2 8,8 19,3 44,1 6,3 12,6 1,7 8,8 10,5 5,9 16,0 14,2	16,8 74,2 82,7 2,2 9,8 40,7 49,1 89,3 100 1,3 2,7 6,2 14,0 2,2 4,2 1,5 8,2 10,2 6,0 46,4 15,5			
130 ** 128 126 124 * 122 109 * 107	1,6 8,3 9,5 17,6 40,3 32,4 71,3 22,9	1,7 8,1 9,4 15,1 33,7 27,9 63,3 23,9	1,9 10,1 11,8 36,9 85,3 66,6 150,3 49,0	1,8 9,9 11,7 30,6 69,2 54,2 121,9 39,2	1,7 8,4 9,2 18,9 41,2 33,6 76,0 22,2	1,5 7,8 9,3 6,7 14,2 16,4 34,7			
63	50,2	55,2	111,0	90,1	51,2	32,4			

сталлический порошок (Іб). Были взяты также образды, полученные перекристаллизацией из водного раствора с добавкой ацетата натрия (Ів) и с добавкой уксусной кислоты (Іг). Масс-спектры снимались в максимально идентичных условиях и приведены в табл. 2 (поскольку пики со значением m/e выше $[(RCOO)_2Cu_2]^+$ весьма слабоинтенсивны, масс-спектры снимались, начиная с указанного иона).

Из данных табл. 2 видно, что при сохранении относительных интенсивностей пиков двуядерных фрагментов ** относительные интенсивности пиков одноядерных ионов * меняются в довольно широких пределах (от 20 до 50% от суммарного ионного тока $\Sigma_{\rm e0}I$). Подобная же картина обнаруживается и в случае пропионата меди. Это дает основание предположить, что пики одноядерных ионов генетически не связаны с фрагментацией димерного молекулярного иона [(RCOO) $_{\rm a}$ Cu $_{\rm a}$ 1 + $_{\rm c}$ 1.

Соотношение интенсивностей ников одноядерных ионов относительно максимального из них $(m/e\ 107)$ во всех образцах (Ia—Ir) является величиной постоянной независимо от доли суммарного ионного тока (расхождение в пределах ошибки метода) (табл. 3).

Эти факты позволяют утверждать, что пики одноядерных ионов, наиболее тяжелый из которых имеет состав [(RCOO)₂Cu]⁺, генетически связаны между собой общей схемой фрагментации.

$$R - C \qquad Cu \qquad C - R$$

$$M (I-II) \qquad M (I-II)$$

$$Cu^{II} \qquad C - R \qquad Cu - O = C = CH - CH_3 \qquad R - C \qquad Cu \qquad C$$

$$Cu^{I+} \qquad Cu^{I} \qquad C \qquad Cu \qquad C$$

Одноядерные фрагменты наблюдаются как в масс-спектрах гидратов І, ІІ, у которых дегидратация происходит непосредственно в приборе, так и в масс-спектрах безводных солей, полученных предварительным обезвоживанием гидратов при 95-105° или последующей перекристаллизацией последних из соответствующих безводных кислот (Ід) в присутствии небольшого количества уксусного ангидрида. Однако по интенсивности одноядерных фрагментов исследуемые образцы ацетата меди можно расположить в ряд Іб > Ів > Іг > Іа > Ід. Этот факт позволяет выдвинуть следующее предположение о происхождении пиков одноядерных фрагментов. Как известно, кристаллические структуры ацетата, пропионата и бутирата меди (II) состоят из молекул [(RCOO)₄Cu₂]·2H₂O ($^{\circ}$). При нагревании вода легко отщепляется и образуются безводные алканоаты, структура которых состоит из димеров [(RCOO) (Cu2), связанных в квазиполимерные цепи (4-6). Трудно представить, что в процессе обезвоживания будет образовываться кристаллическая структура без дефектов. При переходе в пар поликристаллических порошков эти дефекты могут привести к появлению в небольшом количестве молекул [(RCOO₂)Cu]. не известных как таковые в индивидуальном состоянии. В крупных монокристаллах (Іа) и в безводных продуктах, полученных перекристаллизацией из ледяной уксусной кислоты (Ід), количество этих дефектов мень-ие. Нами найдено, что в масс-спектрах I и II, полученных зонной кон-

Таблица З Значения относительных интенсивностей в % (в скобках) в ряду пиков одноядерных фрагментов, отнесенные к m/e=107, в масс-спектрах ацетата меди (II), полученных в разных условиях

_	m/e								
Ион	I	Ia	16	Ів	Ir	Ід			
183 [(CH ₃ COO) ₂ Cu] ⁺ 181 168 [(CH ₃ COO) ₂ Cu—CH ₃] ⁺ 166 153 [(CH ₃ COO) ₂ Cu—2CH ₃] ⁺ 151 [(CH ₃ COO)Cu] ⁺ 122 109 [CuOCO] ⁺ 107 65 [Cu] ⁺	3,7 (5,2) 7,9 (11,0) 48,3 (25,6) 40,9 (57,3) 4,6 (6,5) 10,4 (14,6) 17,6 (24,7) 40,3 (56,5) 32,4 (45,4) 71,3 (100) 22,9 (32,1)	3,0 (4,7) 6,0 (9,5) 14,1 (22,3) 31,3 (49,4) 4,4 (6,9) 8,4 (13,3) 15,1 (23,8) 33,7 (53,2) 27,9 (44,0) 63,3 (100) 23,9 (37,7)	6,9 (4,6) 14,7 (9,8) 38,3 (25,4) 79,1 (52,6) 9,8 (6,5) 22,2 (14,8) 36,9 (24,5) 85,3 (56,7) 66,6 (44,3) 150,3 (100) 49,0 (32,6)	5,5 (4,5) 12,1 (9,9) 28,2 (23,1) 63,0 (51,6) 8,1 (6,6) 18,3 (15,0) 30,6 (25,2) 69,2 (56,7) 54,2 (44,4) 121,9 (100) 39,2 (32,1)	4, 2 (5, 5) 8, 8 (11, 6) 19, 3 (25, 4) 44, 1 (58, 0) 6, 3 (8, 3) 12, 6 (16, 6) 18, 9 (24, 8) 41, 2 (54, 1) 33, 6 (44, 2) 76, 0 (100) 22, 2 (29, 3)	1,3 (3,8) 2,7 (7,7) 6,2 (17,9) 14,0 (40,4) 2,2 (6,4) 4,2 (12,2) 6,7 (19,2) 14,2 (41,0) 16,4 (47,7) 34,7 (100) 14,7 (42,3)			

денсацией при возгонке и снятых в широком диапазоне температур (от 125 до 180°), пики одноядерных фрагментов практически отсутствуют.

Институт химии Академии наук МССР Кишинев

Поступиле 29 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Х. Ш. Харитон, А. В. Аблов, Г. А. Попович, ДАН, 204, № 6 (1972).

² С. R. Reichart, D. K. C. Fung et al., Chem. Commun., № 18, 1094 (1968).

Van Niekerk, F. R. L. Schoening, Acta crystallogr., 6, 227 (1953).

4 A. B. Аблов, Ю. А. Симонов, Т. И. Малиновский, ДАН, 171, 854 (1966).

Симонов, Т. И. Малиновский, Кристаллография, 15, 370 (1970).

6 M. I. Bird, T. R. Lomer, Acta crystallogr., B28, 242 (1972).