ТЕХНИЧЕСКАЯ ФИЗИКА

Н. Н. ЛЕРГУНОВ, В. И. ФРОЛОВ, Н. Е. РИПП, В. П. СОСЕДОВ, В. Н. БАРАБАНОВ

УПРОЧНЕНИЕ УГЛЕРОДНОГО ВОЛОКНА ПРИ ТРЕНИРОВКЕ

(Представлено академиком Ю. Н. Работновым 11 VII 1972)

Упрочнение под действием переменных напряжений на металиах сопровождается увеличением твердости, уменьшением гистерезисной петли, увеличением пределов упругости и текучести (1).

Нами было обнаружено упрочнение при испытании на усталость углеродного волокна, которое имеет хрупкий характер разрушения. Исследования проводились на углеродном волокне, полученном термообработкой полиакрилнитрильного волокна. Структура и свойства такого волокна подробно описаны в работах $\binom{2-4}{2}$.

Оценка разброса свойств жгута показала, что коэффициент вариации для предела прочности $\sigma_{\scriptscriptstyle B}$ и диаметра d между филаментами составляет 22 и 10% соответственно, а по длине филамента — 15.5 и 4.5%.

Отбор однородных образцов был сделан по результатам испытаний филаментов, взятых из одного сечения жгута. От каждого 200-миллиметрового филамента отделяли пять образцов с базой 10 мм (два с одного конца, три с другого). На основании испытания этих образцов на растяжение были отобраны 18 филаментов длиной 100 мм, у которых отклонения ов и d не превышали соответственно 10 и 5% от среднего значения для всех испытанных образцов.

Испытания проводили на машине «Инстрон» типа ТМ-SM, при этом волокно заклеивалось клеем БФ-2 в бумажные рамки. Скорость перемещения траверсы при тренировке составляла 10 мм/мин, а при испытании на прочность 1 мм/мин. Диаметр измеряли по всей длине волокна с интервалом 2,5 мм на оптическом твердометре ПМТ-3 с насадкой МОВ (цена деления 0,3 и) в отраженном свете с использованием синего светофильтра. Тренировку проводили на 100-миллиметровых филаментах, после чего из них изготавливали образцы длиной 10 мм для испытания на прочность.

На рис. 1a показано влияние максимального напряжения цикла $\sigma_{ ext{max}}$ на относительное изменение предела прочности при постоянном числе циклов $N_0 = 1000$. При этом σ_{max} составляло 0,4; 0,6 и 0,8 от $\sigma_{\text{в}}$, а минимальное напряжение цикла $\sigma_{\min} = 0.05 \ \sigma_{\text{в}}$. На рис. 16 показано влияние числа циклов на относительное изменение предела прочности (при $\sigma_{max} = 0.6 \ \sigma_{B}$ и $\sigma_{\min} = 0.05 \sigma_{\scriptscriptstyle B}$).

Из приведенных результатов видно, что в результате тренировки происходит упрочнение волокна. Максимальный эффект наблюдается при $\sigma_{\rm max} = 0.6 \ \sigma_{\scriptscriptstyle B}$ и $N_{\scriptscriptstyle 0} = 1000$. Увеличение как числа циклов до 10000, так и максимального напряжения цикла до 0,8 ов приводит к снижению предела прочности до первоначального значения. В настоящее время методами рентгеноструктурного анализа и электронной микроскопии установлено, что углеродное волокно состоит из искривленных графитоподобных слоев шириной 30-100 Å, имеющих протяженность более 1000 Å (4, 5).

Определенное число (10-15) таких слоев образуют фибриллы, которые имеют предпочтительную ориентацию параллельно оси волокна. Средний угол разориентации базисных плоскостей относительно оси волокна составляет около 20° для исследованного вида волокна.

Углеродное волокно обладает значительной пористостью $\approx 20\%$. Поры по длине имеют протяженность > 200-300 Å, а по ширине 10-20 Å, причем их предпочтительная ориентация повторяет ориентацию фибрилл.

Сравнение прочности волокон с теоретической, оценка которой была сделана в работе (6), показывает, что они различаются почти на два порядка. Такая низкая прочность является следствием высокой пористости и искривленности слоев. Необходимо отметить также, что в результате выпрямления фибрилл при нагружении на начальном участке кривой деформирования наблюдается рост модуля упругости.

Несмотря на то, что углеродное волокно имеет хрупкий характер разрушения, рядом авторов ($^{6-8}$) было установлено, что прицессу разрушения

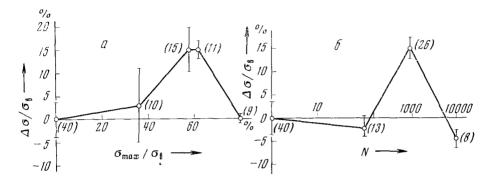


Рис. 1. Зависимость относительного изменения предела прочности углеродного волокна от максимального напряжения цикла σ_{\max} при постоянном числе циклов $N_0=1000$ (a) и от числа циклов N при постоянном максимальном напряжении цикла $\sigma_{\max}=0.6~\sigma_{\rm B}$ (б). В скобках указано число испытанных образцов

предшествует локальная пластическая деформация. Упрочнение при действии циклических напряжений, которое было выявлено в настоящей работе, также можно связать с локальной пластической деформацией, приводящей к релаксации напряжений у концентраторов. Помимо этого, плоскости скольжения образуют новые границы, и, таким образом, происходит дробление или измельчение фибрилл, приводящее к повышению прочности.

Однако наряду с факторами, приводящими к упрочнению в результате действия циклических напряжений, протекают процессы разупрочнения, поскольку с увеличением числа циклов и увеличением максимального напряжения цикла эффект упрочнения уменьшается. Это обстоятельство, по-видимому, связано с ростом трещин и пор.

Поступило 18 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Кепнедп, Ползучесть и усталость в металлах, М., 1965. ² D. V. Ваdаmi, l. C. Joiner, G. A. Jones, Nature, 215, 386 (1967). ³ D. I. Johnson, C. N. Tyson, Brit. J. Appl. Phys., 2, 787 (1969). ⁴ А. Fourdeux, R. Perret, W. Ruland, Intern. Conf. on Carbon Fibres, their Composites and Application, London, 1971, paper № 9. ⁵ I. A. Hugo, V. A. Phillips, B. W. Roberts, Nature, 226, 144 (1970). ⁶ W. S. Williams, D. A. Steffens, R. Bacon, J. Appl. Phys., 41, 4893 (1970). ⁷ R. Bacon, W. H. Smith, Proc. II Conf. Carbon and Graphite, London, 1965, p. 203. ⁸ W. R. Jones, I. W. Johnson, Carbon, 9, 645 (1971).