Доклады Академии наук СССР 1973. Том 210, № 2

УДК 577.576.343

ГЕНЕТИКА

Г. А. ДВОРКИН, В. Ф. ЕФИМОВА, Л. И. КОГАНИЦКАЯ

ВЛИЯНИЕ ЦИТОПЛАЗМЫ НА СИНТЕЗ РНК В ИЗОЛИРОВАННЫХ ЯДРАХ КЛЕТОК ПЕЧЕНИ КРЫСЫ

(Представлено академиком А. С. Спириным 20 XI 1972)

В регуляции транскрипции генома существенная роль принавлежит ядерно-цитоплазматическим отношениям (1). Однако механизм влияния питоплазмы на синтез РНК в япрах остается во многом неясным. Исследования такого рода встречаются с большими трудностями, так как влияние это многообразно и сложно. Поэтому значительный интерес приобретает возможность изучения влияния питоплазмы в упрошенных модельных системах. Условия классической бесклеточной системы существенио отличаются от условий, имеющихся в интактной клетке. Более адекватной с этой точки зрения является бесклеточная система, в которой изолированные клеточные ядра инкубируются в среде с контролируемым составом или в питоплазме, предварительно освобожденной от ядер и мембран. Такой методический подход был использован Томпсоном и Маккарти $\binom{2}{2}$, которые мсследовали действие цитоплазмы на изолированные ядра животных клеток. Авторы изучали скорость синтеза РНК в изолированных ядрах и обнаружили ее изменение при икубации ядер в гомологичной и гетерологичной цитоплазме. Природа явления не исследовалась.

Целью настоящей работы было изучение особенностей транскрипции в изолированных ядрах и роли цитоплазмы в этом процессе. Для характеристики синтезированной ДНК-подобной РНК (Д-РНК) использовали гибрилизационный анализ.

Объектами исследования являлись клетки печени крысы и асцитной гепатомы Зайделя. Ядра клеток выделялись по методу (3) с небольшой модификацией (использовался раствор 2,2 *M* сахарозы и 0,001 *M* MgCl₂).

Цитоплазма клеток печени была получена следующим образом. Печень голодных крыс помещали в раствор, содержащий 0.2~M трис, 0.05~M MgCl₂, 0.03~M β -меркаптоэтанола, pH 8.0, гомогенизировали в стеклянном гомогенизаторе Поттера при соотношении ткани и указанного раствора 1:1. Гомогенат центрифугировали при 12000~g~15 мин. Надосадочную жидкость повторно центрифугировали при 105000~g~8 течение 1 часа и полученную свежеприготовленную надосадочную жидкость использовали в инкубационной смеси в качестве цитоплазмы.

Клетки гепатомы Зайделя получали из асцитной жидкости беспородных крыс на 5 сутки после перевивки опухоли (для перевивки крысе весом 100-120 г вводили впутрибрюшинно 0,5 мл асцитной жидкости). Клетки отмывали в 0,14 M NaCl в присутствии 0,01% гепарина и центрифугировали при 200 g 3 мин. Отмывку повторяли 3-5 раз.

Для получения цитоплазмы клеток Зайделя осадок отмытых клеток после центрифугирования взвешивали в том же растворе, что и при получении цитоплазмы печени, в соотношении 1:1 и разрушали клетки в гомогенизаторе Поттера. Дальпейшее выделение цитоплазмы проводили так же, как и в случае цитоплазмы печени. Все операции по выделению ядер и цитоплазмы проводились на холоду.

Инкубация ядер in vitro для определения синтеза РНК в них проводилась при 37° в течение 5 мин. Полная инкубационная смесь включала ядра

клеток печени или гепатомы $(0,5-0,7\ \text{мг}$ ядерной ДНК), цитоплазму этих клеток $(7\ \text{мг}$ белка), четыре нуклеозидтрифосфата (АТФ, ГТФ, УТФ и ЦТФ) по $0,27\ \text{ммол.}$, один из которых (АТФ или УТФ) был меченным по $C^{14}(0,25\ \mu\text{C})$, буферный раствор $(0,2\ M\ \text{трис},\ 0,05\ M\ \text{MgCl}_2,\ 0,03\ M\ \beta$ -меркантоэтанола, рН 8,0). Общий объем пробы $0,25\ \text{мл}$.

Из пробы изолировали ядра. Из них методом термического фракционирования (*) извлекали ДНК-подобную РНК. Радиоактивность препаратов определяли на сцинтилляционном счетчике. В ряде опытов ДНК-подобную

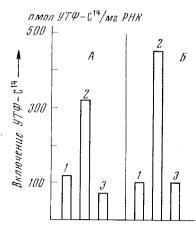


Рис. 1. Включение АТФ-С¹⁴ в ДНК-подобную РНК ядер клеток печени (A) и гепатомы Зайделя (B) в различных условиях инкубации. Инкубация ядер в присутствии трис-буфера (I), цитоплазмы печени (2), цитоплазмы гепатомы (3)

РНК выделяли из полной ипкубацпонной смеси, включающей ядра. ДНК-подобную РНК из печени и генатомы получали методом термического фракционирования, а ДНК из печени — фенольным методом. Для выделения меченной по С¹⁴ РНК из печени и гепатомы крысам внутрибрющинно вводили по 300—400 µС оротовой кислоты вместе с 50 µг актиномиципа Д (для подавления синтеза рибосомной РНК) за 4 часа до забоя животных.

Гибридизацию РНК с ДНК проводили на гелях ДНК, сшитых у.-ф. облучением (*) при соотношении ДНК / РНК = 50, в 2 × SSC (1 × SSC это есть 0,15 M NaCl + + 0,015 M цитрата Na) при 65° в течение 36 час. В опытах по конкурентной гибридизации к ДНК добавляли кроме меченой РНК также различное количество немеченой РНК — конкурента. Общее количество РНК во всех пробах было одинаковым, что достигалось соответствующим добавлением РНК из E. coli.

Как видно из рис. 1, в изолированных ядрах клеток печени и гепатомы регистрируется заметный синтез РНК. Добавление цитоплазмы печени в инкубационную среду стимулирует синтез РНК как в ядрах печени, так и в ядрах гепатомы. При этом в ядрах гепатомы синтез РНК возрастает значительнее, чем в ядрах печени. В отличие от действия цитоплазмы печени, цитоплазма опухолевых клеток не вызывала увеличения синтеза РНК в ядрах гепатомы и ингибировала его в ядрах печени. Этот эффект опухолевой цитоплазмы отличается от наблюдавшегося Томпсоном и Маккарти (2). Специальная проверка, проведенная в присутствии печеночного ингибитора рибонуклеазы (6) и полисом печени, показала, что отсутствие увеличения (пли слабое увеличение) синтеза РНК при добавлении гепатомной цитоплазмы не связано с рибонуклеазной активностью последней.

Следующий вопрос, подлежащий рассмотрению, заключался в исследовании РНК, синтезированной в изолированных ядрах, инкубированных в различных условиях. Однако прежде всего нас интересовало сравнение РНК, синтезированных в ядрах печени и опухоли in vivo и in vitro соответственно. Оба эти вопроса были изучены с помощью метода конкурентной РНК — ДНК-гибридизации

В гибридизациопных экспериментах исследовались меченные по C^{14} и немеченые РНК, выделенные из ядер печени и гепатомы (\mathbf{R}_{π} и \mathbf{R}_{3}), а также из предварительно изолированных ядер печени, проинкубированных in vitro в цитоплазме ($\mathbf{R}_{\pi}^{\,\mathrm{n}}$) и из ядер клеток Зайделя, проинкубированных в гомологической цитоплазме (\mathbf{R}_{3}^{3}).

Результаты представлены в табл. 1. Можно видеть, что ДНК-подобная РНК, выделенная из H_{π}^{n} , хорошо конкурирует с ДНК-подобной РНК из клеток печени и наоборот. Аналогичные результаты имеем с РНК из H_{3}^{3}

и из клеток Зайделя. Специфичность гибридизации в условиях эксперимента (температура отжига 65°) специально контролировалась. Полученные данные указывают на то, что в изолированных ядрах клеток печени и гепатомы продолжается синтез тех же РНК, что и в ядрах соответствующих неразрушенных клеток. Разумеется, такое заключение справедливо лишь для тех РНК, которые выявляются в описанных выше условиях конкурентной гибридизации, т. е. в условиях, когда гибридизация наблюдается лишь на многократно повторяющихся нуклеотидных последовательностях ЛНК.

Таблица 1

Гибридизация ДНК-подобной РНК-С¹⁴ с ДНК в присутствии разных РНК-конкурелтов

Источник РНК-С ¹⁴	Π_{Π} –						→	Я3-					>	Яп—	<u> </u>
Источник РНК-кон- курента		Яп	\mathbf{H}_3	H_{π}^{π}	H_{π}^{3}	\mathfrak{A}_3^{π}	H_3^3		H_3	H^{u}	R_3^8	H_3^{u}	R_{π}^{3}	H_{Π}^{Π}	$\mathbf{H}_{\mathbf{n}}$
Гибридиза- ция (%)	11,0	1,2	8,1	2,0	4,6	6,4	7,3	9,1	2,0	2,1	2,3	2,3	2,8	2,2	1,4

Интереспо сопоставить спектр синтезируемых РНК в клетках печени и гепатомы, точнее, их конкурентные отношения в гибридизационных экспериментах. Как видно из табл. 1, ДНК из печени хорошо конкурирует с РНК из гепатомы Зайделя, снижая гибридизацию последней с 9,1 до 2,1%. Однако РНК гепатомы снижает гибридизацию РНК печени заметно слабее.

Таким образом, РНК гепатомы конкурирует лишь с частью РНК печени. Можно отсюда заключить, что в клетках генатомы синтезируется более «бедный» набор молекул РНК по сравнению с печенью. Поскольку можно думать, что геномы в печени и гепатомы идентичны, вероятно, в клетках гепатомы считывается меньшая часть генома по сравнению с печеночными клетками, т. е. в опухолевых клетках имеет место ограничение транскриппии. При этом наблюдаемое ограничение происходит за счет повторяющихся, по-видимому, регуляторных участков генома. Мы предполагали, что такое ограничение транскрипции обусловлено влиянием цитоплазмы опухолевых клеток. Это предположение можно было проверить в системе in vitro, инкубируя изолированные ядра клеток печени в питоплазме клеток гепатомы и исследуя конкурентную гибридизацию РНК, синтезированную в этих условиях. Результаты таких опытов приведены в табл. 1. Можно видеть, что РНК из ядер печени, инкубированных в цитоплазме гепатомы $({\rm A_n}^3)$ хуже конкурирует с меченой РНК печени $({\rm A_n})$, чем РНК из ${\rm A_n}^\pi$. С другой стороны, РНК из ${\rm A_3}^3$ хуже конкурирует с РНК из ${\rm A_n}^\pi$ и из печени, чем РНК из Язп. Все исследованные РНК хорошо конкурируют с РНК гепатомы.

Таким образом, спектр синтезируемых РНК в изолированных ядрах задается цитоплазмой, в которой эти ядра инкубируются. При этом цитоплазма клеток гепатомы, по-видимому, специфически ограничивает транскрипцию в ядрах печени и сужает спектр новообразованных РНК. Эти результаты, как и приведенные выше данные о синтезе РНК в ядрах in vivo и in vitro, соответствуют результатам, полученным in vivo на клетках печени и опухоли.

Институт общей генетики Академии наук СССР Москва Поступило 15 XI 1972

цитированная литература

¹ П. Harris, Nucleus and Cytoplasma, Oxford, 1968. ² Н. В. Thompson, В. J. McCarthy, Biochem. Biophys. Res. Commun, 30, 2, 166 (1968). ³ А. О. Родо, V. G. Allfrey, А. Е. Mirsky, Proc. Nat. Acad. Sci, U.S.A., 56, 2, 550 (1966). 4 Г. П. Георгиев, В. Л. Мантьева, Биохимия, 27, 949 (1962). ⁵ В. Я. Арпон, Г. П. Георгиев, ДАН, 172, 716 (1967). ⁶ Gribnau, J. G. Schoenmakers et al., Biochim et biophys. acta, 224, 1, 55 (1970).