УДК 517.544

MATEMATUKA

М. И. ЖУРАВЛЕВА

ОДНОРОДНАЯ КРАЕВАЯ ЗАДАЧА РИМАНА С БЕСКОНЕЧНЫМ ИНДЕКСОМ СО СЧЕТНЫМ МНОЖЕСТВОМ РАЗРЫВОВ ПЕРВОГО РОДА ЕЕ КОЭФФИЦИЕНТА

(Представлено академиком П. Я. Кочиной 10 VII 1972)

Краевая задача Римана $\Phi^+ = G\Phi^-$ с конечным числом разрывов первого рода $G(t) \neq 0$ была решена в 1941 г. ((¹), гл. VI) независимо друг от друга (различными методами) Φ . Д. Гаховым и Н. И. Мусхелишвили. Задача Римана с бесконечным индексом и непрерывным коэффициентом рассматривалась Н. В. Говоровым и другими авторами (⁴-¹0).

В данной статье дается решение задачи для случая счетного множества разрывов нигде не обращающегося в нуль коэффициента G(t), $t \in L$: $\{1 \le t \le \infty\}$, имеющего бесконечный индекс степенного порядка $(^6)$. Функция $\ln G(t)$ задается в виде разности непрерывной функции и некоторой ступенчатой функции. Назовем функцию $[f(t)]_N \equiv f(t_n)$, $t_n \le t \le t_{n+1}$, $n=4,2,\ldots$, с т у п е н ч а т о й ч а с т ь ю ф у н к ц и и f(t) п о п о с л е д ов а т е л ь н о с т и N: $\{t_n \nearrow + \infty\}$. При этом f(t) предполагаем строго монотонно возрастающей. Через \vec{B} обозначим класс функций, аналитических в области D с границей L: $\{1 \le t \le \infty\}$ и ограниченных в любом круге $|z| \le R$; через B, $B \subset \vec{B}$,— класс функций, ограниченных в D; через B_σ , $B_\sigma \subset B$,— класс функций вполне регулярного роста (в.р.р.) порядка σ , $0 < \sigma < 1/2$.

Возьмем на контуре L две произвольные последовательности N_k : $\{1 < t_{1, k} < t_{2, k} < \ldots\}$, $t_{n, k} \to \infty$, k = 1, 2. Рассмотрим в области D краевую задачу Римана *

$$\Phi^+(t) = G(t)\Phi^-(t), \quad 1 \leqslant t \leqslant \infty, \quad t \neq t_{n,2}, \tag{1}$$

при условиях

$$\arg G(t) = \varphi(t)t^{\rho} - m(t), \quad m(t) = [\varphi_0(t)t^{\rho}]_{N_1}, \quad \varphi_0(t)t^{\rho}, \quad (2)$$

при этом имеет место представление

$$\{\varphi(t) - \varphi_0(t)\}t^{\rho} = \psi(t)t^{\sigma}, \qquad 0 < \rho < \infty, \quad 0 < \sigma < \min(1/2, \rho), \quad (3)^{-1}$$

$$\phi(t) \in H_{\mu}, \quad \phi_0(t), \, \psi(t) \in H_{\mu_0}, \, (\rho - \sigma)/(1 + \rho - \sigma) < \mu \le 1, \quad 0 < \mu_0 \le 1. \quad (4)$$

В $[t_{n, 1}, t_{n+1, 1})$ выберем arg G(t) под условием $(n=1, 2, \ldots)$

$$\arg G(1) = -2\pi\beta_0, \quad m(t_n) - m(t_n - 0) = -2\pi\beta_n, \quad 0 < \beta_n < 1.$$
 (5)

Функцию $\ln |G(t)|$ будем считать:

- а) непрерывной по Гёльдеру на каждом интервале $(t_{n,2}, t_{n+1,2})$;
- б) допускающей асимптотическое представление

$$\ln |G(t)| = \lambda_2 t^{\sigma_0} + o(t^{\sigma_0}), \quad 0 \le \sigma_0 \le \sigma, \quad t \to \infty; \tag{6}$$

в) в $t_{n,\,2}$ имеющей произвольные скачки $\Delta_n = o\left(t_{n,2}^{\sigma_0}\right),\; n \to \infty.$ Наконец, полагаем

$$\psi(\infty) = \lambda_1 > 0, \quad \lambda_1 > |\lambda_2| \operatorname{tg} \, \operatorname{\sigma\pi} \, \operatorname{при} \, \sigma_0 = \sigma, \quad -\infty < \lambda_2 < +\infty \, \operatorname{при} \, \sigma_0 < \sigma. \tag{7}$$

^{*} Как показывают исследования, в точках $t_{n,2}$ предельные значения $\Phi^{\pm}(t_{n,2})$ могут не существовать, но всегда $\Phi^{\pm}(t_{n,4})=0$.

Определение порядка, индикатора и функции в.р.р. в открытом и замкнутом углах берется нами из $(^2$, 5).

Нами используется доказанная в (11)

Теорема 1. Если F(z) имеет в.р.р. в угле (α, β) * и непрерывный индикатор $h_F(\theta)$ в точках α и β , то F(z) имеет в.р.р. и в замкнутом угле $[\alpha, \beta]$.

Спедствие. Если F(z) имеет в.р.р. $g(\alpha, \beta)$ и $h_F(\alpha) \leq h_F(\alpha + 0)$, $h_F(\beta) \leq h_F(\beta - 0)$, то F(z) имеет в.р.р. $g(\alpha, \beta)$.

Следствие вытекает из общих соотношений для индикатора:

$$h(\alpha + 0) \le h(\alpha) \le +\infty$$
, $h(\beta - 0) \le h(\beta) \le +\infty$.

По аналогии с (5) введем в рассмотрение функцию

$$X(z) = \exp\left\{\frac{z}{2\pi i}\int_{1}^{\infty}\frac{\ln G(x)}{x(x-z)}dx\right\},$$

которую назовем канонической. Функция X(z) удовлетворяет краевому условию (1).

 Π емма 1. B точках $t_{n,h}$ функция X(z) имеет оценки

$$K_n|z-t_{n,1}|^{\beta_n} < |X(z)| < M_n|z-t_{n,1}|^{\beta_n}, z \to t_{n,1}, n = 1, 2, ..., K_n < |X(z)| < M_n, z \to t_{n,2}; M_n, K_n > 0, n = 1, 2, ...$$

 Π емма 2. Функция X(z) в $[0, 2\pi]$ имеет порядок, не превосходящий ρ .

 $\vec{\Pi}$ емма 3. При выполнении условий (2)-(7) справедливо асимптотическое представление

$$\ln G(t)=i[\lambda_1 t^\sigma+lpha(t)t^v]+\lambda_2 t^{\sigma_0}+o(t^{\sigma_0}), \quad v<\sigma,$$
где $lpha(t)-вещественная ограниченная функция.$

Лемма 4. В любом угле $[\eta, 2\pi - \eta], \eta > 0$, функция X(z) имеет в.р.р. порядка σ с индикатором $(\eta \le \theta \le 2\pi - \eta)$:

$$m{h}_{\mathrm{X}}(\theta) = -^{1}/_{2}\left[\lambda_{1}\cos\sigma\left(\theta-\pi
ight) + \widetilde{\lambda}_{2}\sin\sigma\left(\theta-\pi
ight)
ight]/\sin\sigma\pi, \quad \lambda_{2} = \left\{egin{array}{ll} \lambda_{2}, & \sigma_{0} = \sigma, \ 0, & \sigma_{0} < \sigma. \end{array}
ight.$$

 Π емма 5. Для индикатора $h_{\mathbf{x}}(\theta)$ справедливы неравенства

$$h_{\mathrm{X}}\left(0\right) \equiv \overline{\lim_{t \to \infty}} \ t^{-\sigma} \ln \left| \ \mathrm{X}^{+}(t) \right| \leqslant^{1}/_{2} \ \left[\widetilde{\lambda}_{2} - \lambda_{1} \operatorname{ctg} \operatorname{sp}\right] \equiv h_{\mathrm{X}}\left(+ \ 0\right),$$

$$h_{\mathrm{X}}\left(2\pi\right) \equiv \overline{\lim_{t \to \infty}} t^{-\sigma} \ln\left|\left.\mathrm{X}^{-}(t)\right|\right| \leqslant -1/2 \left[\widetilde{\lambda}_{2} + \lambda_{1} \operatorname{ctg} \operatorname{sp}\right] \equiv h_{\mathrm{X}}\left(2\pi - 0\right).$$

Из лемм 4 и 5, следствия теоремы 1 и условия $\lambda_1 > |\tilde{\lambda}_2|$ tg ол вытекает Теорема 2. Функция $X(z) \subseteq B_\sigma$ и имеет индикатор

$$h_{X}(\theta) = -\frac{1}{2} [\lambda_{1} \cos \sigma(\theta - \pi) + \tilde{\lambda}_{2} \sin \sigma(\theta - \pi)] / \sin \sigma \pi, \quad 0 \leq \theta \leq 2\pi.$$

Следствие. X(z) npu $z \to \infty$ имеет показательный полядок убывания, $\tau.$ e.

$$\max_{|z|=r} |X(z)| < e^{-Kr^{\sigma}}, \quad K > 0.$$

Замечание. Каноническая функция при $\lambda_1 < |\bar{\lambda}_2|$ tg от является решением задачи (1)—(7) в классе B, но при этом уже $X(z) \not\in B$.

T е о p е m а 3. Общее решение задачи (1)-(7) в классе \widetilde{B} имеет вид

$$\Phi(z) = X(z)F(z), \tag{8}$$

где F(z) — любая целая функция. В точках $t_{n,i}$ всякое решение $\Phi(z) \in \widehat{B}$ имеет корни порядка не ниже β_n .

^{*} Углы $\alpha < \arg z < \beta$ и $\alpha \leqslant \arg z \leqslant \beta$ обозначены через (α,β) и $[\alpha,\beta]$.

Теорема 4. Общее решение в классе B однородной краевой задачи Pимана (1)-(7) выражается формулой (8), где F(z) — целая функция порядка $\sigma_F \leq \sigma$, удовлетворяющая на контуре L асимптотическим соотношениям:

a) $npu \lambda_2 > 0 \ (C_F = \text{const})$:

$$\ln|F(t)| < C_F - \frac{1}{2} \ln|G(t)| - \frac{t}{2\pi} \int_{1}^{\infty} \frac{\varphi(x) x^{\rho} - m(x)}{x(x-t)} dx;$$
 (9)

б) $npu \lambda_2 < 0$:

$$\ln|F(t)| < C_F + \frac{1}{2} \ln|G(t)| - \frac{t}{2\pi} \int_{1}^{\infty} \frac{\varphi(x) x^{\rho} - m(x)}{x(x-t)} dx; \tag{10}$$

в) при $\lambda_2=0$ одновременно выполняются соотношения (9) и (10). Индикатор решения $\Phi(z)$ выражается формулой $(0\leqslant\theta\leqslant2\pi)$

$$h_{\Phi}(\theta) = h_F^*(\theta) - \frac{1}{2} \left[\lambda_1 \cos \sigma (\theta - \pi) + \widetilde{\lambda}_2 \sin \sigma (\theta - \pi) \right] / \sin \sigma \pi, \tag{11}$$

 $z\partial e\ h_F^*(\theta)$ — формальный индикатор функции F(z) (7).

Замечание 1. При $\sigma_F < \sigma$ условия (9) и (10) заведомо выполняются

и потому не нуждаются в особой проверке.

Замечание 2. При $\lambda_2 > 0$ неравенство (10) вытекает из (9), при $\lambda_2 < 0$ (9) вытекает из (10), при $\lambda_2 = 0$ эти неравенства, вообще говоря, не следуют друг из друга.

Теорема 5. Общее решение задачи (1)—(7) в классе B_{σ} имеет вид (8) с индикатором (11), где F(z) — функция в.р.р. формального порядка σ ,

подчиненная условиям а), б), в).

Теорема 6. Общее решение задачи (1)-(7) в классе функций порядка убывания σ :

$$\max_{|z|=r} |\Phi(z)| \leqslant e^{-K_r \sigma}, \quad K > 0,$$

выражается формулой (8), где целая функция F(z) удовлетворяет условиям: 1) или $\sigma_F < \sigma$, 2) или $\sigma_F = \sigma$ и

$$h_{\rm F}(0) < \min\{-h_{\rm X}(0), -h_{\rm X}(2\pi)\}.$$

Замечание. Условие $\mu > (\rho - \sigma) / (1 + \rho - \sigma)$ является существенным: при его соблюдении по заданной функции $\varphi(t)$ можно построить соответствующую строго монотонно возрастающую функцию $\varphi_0(t)t^\rho$, обеспечивающую выполнение представления (3). Если же $\mu < (\rho - \sigma)/(1 + \rho - \sigma)$, то задача (1)—(7) в определенных случаях задания |G(t)| может оказаться неразрешимой.

В заключение автор выражает глубокую благодарность проф. Н. В. Говорову, руководившему настоящей работой.

Кубанский государственный университет Краснодар Поступило 6 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ф. Д. Гахов, Краевые задачи, 1963. ² Б. Я. Левин, Распределение корпей целых функций, 1956. ³ Н. И. Мусхелишвили, Сингулярные интегральные уравнения, 1962. ⁴ Н. В. Говоров, ДАН, 154, № 6 (1964). ⁵ Н. В. Говоров, Сборн. Теория функций, функциональный анализ и их приложения, в. 6, Харьков, 1968. ⁶ Н. В. Говоров, ДАН, 182, № 4 (1968). ⁷ Н. В. Говоров, Сборн. Теория функций, функциональный анализ и их приложения, в. 15, Харьков, 1972. ⁸ П. Г. Юров, Изв. Высш. учебн. завед., сер. матем., № 2 (51) (1966). ⁹ Ф. Д. Берков и ч, Е. М. Конышкова, Сообщ. Ростовск. научн. математ. общ., 1968. ¹⁰ М. Э. Толочко, Изв. АН БССР, сер. физ.-матем. наук, № 4 (1969). ¹¹ Н. В. Говоров, С функциях вполне регулярного роста в полуплоскости, Кандидатская диссертация, Ростовский гос. унив., 1966.