УДК 541.183

ФИЗИЧЕСКАЯ ХИМИЯ

П. П. ЗОЛОТАРЕВ, академик М. М. ДУБИНИН

ОБ УРАВНЕНИЯХ, ОПИСЫВАЮЩИХ ВНУТРЕННЮЮ ДИФФУЗИЮ В ГРАНУЛАХ АДСОРБЕНТА

Обсудим феноменологические уравнения внутренней диффузии в гранулах адсорбента. Эти уравнения часто записывают в виде

$$\partial a / \partial t + \partial C / \partial t = \nabla (D_i \nabla C),$$
 (1)

$$a = f(C), (2)$$

где C и a — локальные концентрации адсорбтива в подвижной и неподвижной фазах соответственно, f(C) — уравнение изотермы адсорбции, D_i — коэффициент внутренней диффузии, ∇ — оператор.

Для некоторых типов адсорбентов уравнения (1), (2) удовлетворительно описывают экспериментальные данные при допущении постоянства коэффициента D_i (например, (1)), для других этот коэффициент не может быть принят постоянным.

Уравнение (1) можно написать и так

$$\partial a/\partial t + \partial C/\partial t = \nabla \left(D_i^* \nabla C\right) + \nabla \left(D_a^* \nabla a\right). \tag{3}$$

Здесь учитывается в явном виде перенос вещества в адсорбционной фазе с коэффициентом диффузии D_a^* , а под D_i^* понимается коэффициент диффузии в подвижной фазе.

 \hat{H} етрудно видеть, что (3) сводится к (1), если под D_i в (1) понимать величину

$$D_i = D_i^* + D_a^* (df/dC). \tag{4}$$

Существенным допущением, используемым в рассмотренных уравнениях, является допущение о наличии локального равновесия между фазами в каждой макроточке зерна адсорбента (уравнение (2)). Логично предположить, что условие (2) имеет место для однороднопористых адсорбентов таких, как силикагели, алюмогели и некоторые типы активных углей. В то же время его нельзя считать в общем случае оправданным для таких широко применяемых на практике адсорбентов, как гранулированные цеолиты и понообменные смолы (например, (2)).

Хорошо известно, что гранулы цеолита, имеющие обычно размеры $10^{-1} - 5 \cdot 10^{-1}$ см, получаются путем формования кристаллического порошка синтетических цеолитов с размерами кристалликов $10^{-5} - 10^{-4}$ см со связующими. Зазоры между кристалликами образуют вторичную пористую структуру. Первичной пористостью является пористость самих кристалликов, содержащихся в грануле.

Похожую пористую структуру имеют и ионообменные смолы (2).

Главная особенность кристаллов цеолитов — высокая чувствительность скорости диффузии в них к размеру адсорбируемых молекул. Поэтому в зависимости от природы адсорбтива и давления в одних случаях кинетика адсорбции в грануле цеолита будет лимитироваться внутренней диффузией в элементарных кристалликах цеолита, а в других — диффузией во вторичной пористой структуре. Может иметь место и промежуточный случай.

Попытаемся вывести общие уравнения, определяющие макрокинетику физической адсорбции в гранулах адсорбента с описанной выше бидис-

персной пористой структурой. Будем делать это на примере гранул пеолита. Пусть в единице объема гранулы в среднем содержится N первичных кристалликов цеолита и форма этих кристалликов близка к сферической с радиусом r_0 . Указанное допущение, разумеется, не является принципиальным. Модель может быть легко обобщена для кристалликов другой формы и даже для кристалликов различных размеров. Важно следующее: в грануле должно содержаться достаточно большое число первичных кристалликов, что дает возможность проводить статистическое осреднение, необходимое при выводе макроуравнений переноса. В этом смысле положение до пекоторой степени аналогично ситуации, возникающей при выводе уравнений динамики адсорбции в зернистой шихте (3, 4) и при рассмотрении проблем фильтрации жидкостей и газов в трещиноватых горных породах (5, 6). Для реальных гранул цеолита указанное условне всегда выполняется, так как, согласно изложенному, $r_0/R \sim 10^{-3}$ (R- характерный размер гранулы).

Осредненное уравнение баланса массы адсорбата в адсорбенте по-прежнему будет, как нетрудно показать, записываться в форме (1). Здесь D_i , однако, имеет уже смысл коэффициента диффузии в каналах вторичной пористой системы, а C и a — осредненные по физически бесконечно малому объему $\Delta\Omega$ вещества гранулы (содержащему достаточно большое число кристалликов, но малому по сравнению с R^3), соответствующие концен-

Будем считать также, что в отдельных кристалликах цеолита уравнение внутренней диффузии таково:

$$\partial (ra_*) / \partial t = D_a \partial^2 (ra_*) / \partial r^2. \tag{5}$$

Здесь D_a — коэффициент диффузии в кристаллах цеолита, $a_*(x, y, z, y)$ r, t) — локальная концентрация адсорбата в точке кристаллика со сферической координатой r^* , (x, y, z) — координата выделенного физически бесконечно малого объема гранулы $\Delta\Omega$.

Указания на то, что уравнение внутренней диффузии в кристалликах деолита имеет вид (5), есть в ряде работ (например, (7, 8)).

Нетрудно видеть, что

$$\frac{\partial a}{\partial t} = \frac{\partial a_1}{\partial t} + \frac{\partial a_2}{\partial t}, \quad \frac{\partial a_2}{\partial t} = 4\pi r_0^2 N D_a \left(\frac{\partial a_*}{\partial r}\right)_{r=r_0}, \tag{6}$$

где a_1 — осредненная по $\Delta\Omega$ концентрация рассматриваемого вещества (адсорбция) на стенках вторичных пор, a_2 – осредненная по $\Delta\Omega$ концентрация этого вещества в кристалликах цеолита.

На стенках вторичных пор и на поверхности кристалликов должно иметь место условие локального равновесия. Поэтому a_1, a_2 и C здесь связаны соотношениями.

$$a_1(x, y, z, t) = f_1[C(x, y, z, t)], \quad a_*(x, y, z, r_0, t) = f_2^*[C(x, y, z, t)],$$
 (7)

где $f_1(C)$ и $f_2^*(C)$ — изотермы адсорбции на стенках вторичных пор и в кристаллах цеолита (осредненные по $\Delta\Omega$).

Если гранула вначале не содержит адсорбата, то

$$a_*(x, y, z, r, 0) = 0, \quad \left(r^2 \frac{\partial a_*}{\partial r}\right)_{r=0} = 0, \quad C(x, y, z, 0) = 0, \quad a_2|_{t=0} = 0.$$
 (8)

На внешней поверхности гранулы S должно выполняться условие для концентрации С. В частности, в случае внутридиффузионной кинетики $C(S, t) = C_0$

^{*} В микропорах, как известно, теряет физический смысл разделение введенного туда вещества на находящееся в свободном и адсорбированном состоянии.

Используя (5)-(8) и применяя преобразование Лапласа, нетрудно исключить из этих соотношений a_* вполне аналогично тому, как это сделано в (4). Тогда получим

$$a_2(x, y, z, t) = A \int_0^{\theta} f_2^* [C(x, y, z, \sigma)] \psi(\theta - \sigma) d\sigma.$$
 (9)

 $\Pi_{\rm PR}$ этом использовано условие $a_2|_{t=0}=0$ и обозначено

$$A = 4\pi r_0^3 N, \quad \theta = t/t_0, \quad t_0 = r_0^2/D_a,$$
 (10)

$$\psi(\theta) = 2\sum_{n=1}^{\infty} \exp\left(-\pi^{2}n^{2}\theta\right); \quad \psi(\theta) = \frac{1}{\sqrt{\pi\theta}} \left[1 + 2\sum_{n=1}^{\infty} e^{-n^{2}/\theta}\right] - 1.$$
 (11)

Учитывая (6), (7), (9) и условие $a_i|_{i=0}=0$, окончательно имеем

$$a(x, y, z, t) = f_1(C) + A \int_0^{\theta} f_2^* [C(x, y, z, \sigma)] \psi(\theta - \sigma) d\sigma.$$
 (12)

Таким образом, кинетика адсорбции в гранулах цеолита и родственных им по структуре адсорбентах с учетом сделанных допущений должна описываться уравнениями (1), (12). (Они эквивалентны (1), (5)—(8).)

Рассмотренные системы имеют два характерных времени диффузионной релаксации τ и T. Первое из них $\tau \sim r_0^2/D_a$ определяет установление равновесия в отдельных кристалликах цеолита, второе -T определяет установление равновесия во вторичной пористой структуре. Поэтому при кинетике адсорбции в указанных системах могут реализоваться три различных случая.

а) Кинетика адсорбции лимитируется внутренней диффузией в кристалликах цеолита ($\tau \gg T$, $D_i \to \infty$). Тогда уравнения (1), (12) вырождаются в (12) и условие $C(x, y, z, t) = C_0$. Отсюда следует, что

$$a(x, y, z, t) \equiv \bar{a}(t) = f_1(C_0) + \frac{Af_2^*(C_0)}{3} \left[1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{e^{-n^2\pi^2\theta}}{n^2} \right].$$
 (13)

Как видно из (13), кинетическая кривая в этом случае, вообще говоря, выходит не из точки $(t=0, \bar{a}=0)$, а из $(t=0, \bar{a}=f_4(C_0))$. Указанный эффект иногда наблюдается в опытах.

б) Кинетика адсорбции лимитируется диффузией во вторичной пористой структуре ($T\gg \tau, D_a\to \infty$). Тогда уравнение (12) вырождается в

$$a(x, y, z, t) = f_1(C) + \frac{4}{3} \pi r_0^3 N f_2^*(C) \equiv f(C)$$
 (14)

и наша система становится эквивалентной системе уравнений (1), (2). Некоторые способы приближенного аналитического решения (1), (2) в случае нелинейных зависимостей f(C) рассмотрены, в частности, в (9 , 10).

нелинейных зависимостей f(C) рассмотрены, в частности, в $\binom{9}{7}$, $\binom{10}{10}$.

в) Промежуточный случай (времена T и τ сравнимы) описывается полной системой уравнений (1), (2). Диффузия в гранулах цеолита, как видно из (12), в этом случае зависит от вида изотермы адсорбции. Для определения D_a необходимо экспериментальное исследование процесса внутренней диффузии в отдельных кристалликах цеолита.

В заключение отметим, что уравнения кинетики адсорбции для одно-роднопористых адсорбентов получаются из рассмотренных (1), (12) как

частный случай, если считать в них $D_a = 0$.

Авторы выражают глубокую благодарность А. М. Волощуку, И. Т. Ерашко и В. В. Серпинскому за обсуждение работы.

Институт физической химии Академии наук СССР Москва Поступило 29 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ L. Marcussen, Chem. Eng. Sci., 25, 1487 (1970). ² K. Kun, R. Kunin. J. Polymer Sci., C, № 16, 1457 (1967). ³ П. Н. Золотарев, Л. В. Радушкевич. ДАН, 182, 126 (1968); ЖФХ, 44, 1071 (1970). ⁴ П. П. Золотарев, Изв. АН СССР. сер. хим., 1968, 2408; 1970, 1703; 1971, 2820. ⁵ Г. И. Баренблатт, Ю. П. Желтов, И. Н. Кочина, Прикл. матем. и мех., 24, № 5 (1960). ⁶ Ю. П. Желтов, П. П. Золотарев, Журн. прикл. мех. и техн. физ., № 5, 135 (1962). ⁷ А. М. Толмачев и др., ЖФХ, 46, 700, 1250, 1254 (1972). ⁸ D. M. Ruthven, K. F. Loughlin. Trans. Farad. Soc., 67, 1661 (1971); D. R. Garg, D. M. Ruthven, Chem. Eng. Sci., 27, 417 (1972). ⁹ П. П. Золотарев, Изв. АН СССР, сер. хим., 1969, 711; Теоретич. основы химич. технол., 3, 854 (1969). ¹⁰ П. П. Золотарев, М. М. Дубинин, ДАН, 203, 1347 (1972).