Доклады Академии наук СССР 1973. Том 210, № 2

УДК 548.736

КРИСТАЛЛОГРАФИЯ

Ю. Н. ДРОЗДОВ, Э. А. КУЗЬМИН, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ВАНАДАТА СЕРЕБРА $Ag_{2-x}V_4O_{10} \ (x=0.57)$

Кристаллы этого ванадата серебра, выращенные в лаборатории гидротермального синтеза Института кристаллографии АН СССР Л. Н. Демьянец и Т. Г. Уваровой и любезно предоставленные нам, представляют собой очень тонкие и длинные иголки черного цвета с металлическим блеском. После длительной процедуры отборки кристаллов, затрудненной их волокнистым строением, был найден пригодный для дифракционного исследования образец с сечением 0.05×0.1 мм². Параметры элементарной ячейки получены из рентгенограммы вращения и разверток слоевых линий, вдоль оси иголочки c:

$$a = 11.93 \text{ Å}, \quad b = 8.81 \text{ Å}, \quad c = 3.69 \text{ Å}, \quad \gamma = 90^{\circ}24'.$$

В ячейке содержится две единицы $Ag_{2-x}V_4O_{10}$ (x=0.57).

Трехмерный экспериментальный материал для рентгеноструктурного анализа составили 300 непулевых отражений hk0-hk3 (Мо K_{α} -излучение. $\max \sin \theta/\lambda = 0.85 \ {\rm A}^{-1}$). Интенсивности рефлексов оценивались по $2^{\prime\prime\prime}$ -шкале марок почернения с использованием кратных экспозиций для сильных рефлексов и приводились к абсолютной шкале по методу Вильсона (1). При лауэвской симметрии 2/m одни лишь интегральные (hkl) погасания h+l=2n+1 допускают три федоровские группы $(\phi,r.)$ $C_2^3=B2$, $C_3^3=Bm$, $C_{2h}^-=B2/m$.

Трехмерная функция Патерсона, построенная по экспериментальным данным, приведена в точечном виде на рис. 1.

При наличии тяжелого Ag (Z=47) анализ межатомной функции все же осложняется псевдосимметрией, которую можно характеризовать двумя факторами:

- 1) Все сильные патерсоновские пики концентрируются в плоскостях (uv0) и $(uv^{1}/_{2})$, что говорит о расположении тяжелых атомов Ag и V в двух сечениях (z=0 и $z=^{1}/_{2})$. Это перекрывание затрудняет разделение пиков связки и взаимодействия от кристаллографически различных атомов.
- 2) Наиболее сильные пики функции межатомных векторов попадают на бесконечные цепочки, аналогичные описанным в (2), создавая псевдопериодичность.

Эти затруднения заставили для апализа функции Патерсона привлечь кристаллохимические особенности соединений «бронзового» типа (2 , 3) в рамках характерной для них ф.г. $B2 \ / m$.

На функции Патерсона сравнительная оценка мощности пика связки Ag-Ag подтверждала их нестехиометрию. С учетом этого фактора была получена предварительная модель, уточнение которой привело к сочтенному нами недостаточным коэффициенту расходимости R=15%. Уточнение методом наименьших квадратов параметров степени заселенности атомов Ag делало необходимым попижение симметрии до ф.г. Bm, за счет разной кратности этих атомов: $\mu_{Ag}=2$ и $\mu_{Ag}=0.86$. Правомерность данной модели подтверждалась сокращением R-фактора до 10.3%. Окончательные координаты приведены в табл. 1.

Структура состоит из сильно искаженных ванадиево-кислородных октаэдров (рис. 2), которые соединены вершинами и ребрами в слои, параллельные плоскости xy (рис. 3). Кристаллохимический мотив близок к структуре фазы δ синей серебряно-ванадиевой бронзы $Ag_{1-x}V_2O_5$ с x=0,32 (4) с оговоркой о понижении симметрии Φ .г. B2/m до Bm за счет неэквивалентности двух атомов Ag.

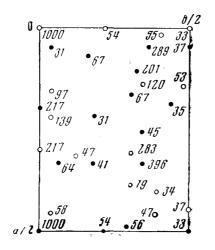


Рис. 1. Функция Патерсона в точечном приближении. Черными кружками обозначены максимумы с w=1/2, светлыми с w=0

Рис. 2. Структура $\mathrm{Ag}_{2-x}\mathrm{V}_4\mathrm{O}_{10}$ в проекции на плоскость xy. Заштрихованными кружками обозначены атомы с $z={}^1/_2$

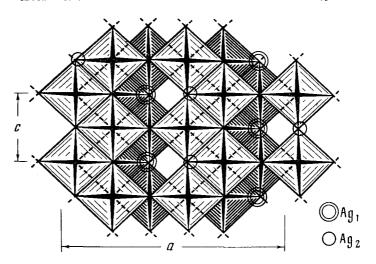


Рис. 3. Стенка ванадиево-кислородных октаэдров в структуре ${\rm Ag_{2-x}V_4O_{10}}.$ Проекция на плоскость xy

Расстояния V—O в октаэдрах 1,64—2,51 Å с функциональным различием связей. Самые короткие связи с необобщенным между различными атомами ванадия атомом O (связи типа V_1 — O_3 ; рис. 2) имеют длины 1,64—1,77 Å (среднее 1,67). Наиболее длинные связи от атома V до одного из обобщенных атомов O направлены перпендикулярно стенке из октаэдров (типа V_1 — O_2): 2,30—2,51 Å (среднее 2,40). Остальные связи 1,74—2,26 Å (среднее 1,94).

Атомы Ag_1 и Ag_2 с к.ч. 7 при длинах связей Ag-O=2,45-2,95 Å (среднее 2,62) расположены между стенками ванадиево-кислородных октаэдров.

. Таблица 1 Координаты базисных атомов в структуре $Ag_{2-x}V_4O_{10}$

Атомы	x/a	y/b	z/c	Атомы	x/a	y /b	z/c
$\begin{array}{c c} Ag_1 & \\ Ag_2 & \\ V_1 & \\ V_2 & \\ V_3 & \\ V_4 & \\ O_1 & \\ O_2 & \\ \end{array}$	0,378 0,602 0,070 0,943 0,776 0,238 0,925 0,082	0,476 0,528 0,160 0,832 0,158 0,834 0,092 0,891	0 0 0 0 0 0	O ₃ O ₄ O ₅ O ₆ O ₇ O ₈ O ₉ O ₁₀	0,042 0,929 0,235 0,758 0,778 0,203 0,607 0,398	0,357 0,646 0,119 0,886 0,345 0,654 0,134 0,859	0 0 0 0 0 0 0

Расстояния V-V через общую О-вершину их октардров 3,51, 3,52 Å, через общее ребро 3,07-3,51 Å (среднее 3,28).

Горьковский исследовательский физико-технический институт при Горьковском государственном университете им. Н. И. Лобачевского

Поступило 24 I 1972

Институт кристаллографпи им. Л. В. Шубникова Академии наук СССР Москва

цитированная литература

¹ A. C. J. Wilson, Nature, **150**, 152 (1942). ² A. A. Петрунина, Э. А. Кузьминидр., Сборн. Конституция и свойства минералов, Киев, 1973. ³ J. Galy, Bull. Soc. fr. Mineral. et Cristallogr., 94, 250 (1971). ⁴ S. Andersson, Acta chem. scand., **19**, 6, 1371 (1965).