УДК 541.139 ХИМИЯ

В. Т. КАЛИННИКОВ, Н. П. ЛИПАТОВА, О. Д. УБОЖЕНКО, А. А. ЖАРКИХ ТЕРМОМАГНИТНЫЕ ИССЛЕДОВАНИЯ НЕКОТОРЫХ ГАЛОИДНЫХ И ОКСИГАЛОИДНЫХ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Nb(IV)

(Представлено академиком И. В. Тананаевым 26 Х 1972)

Магнитные свойства Nb^{1V} изучались преимущественно для соединений типа $NbX_4 \cdot 2L$, где X — галоидные атомы Cl или Br, а L — азот-, серу- или кислородсодержащие лиганды. Эти свойства оказались весьма нетривиальными $\binom{1}{2}$.

Представляло интерес провести термомагнитные исследования также некоторых октаэдрических комплексов типа ${
m M_2}^{\scriptscriptstyle \rm I}{
m NbCl_6}$ и комплексов с не-

эквивалентными лигандами типа $M_2^{1}NbOCl_4$, синтезированных ранее (3) одним из авторов настоящего сообщения. Магнитная восприимчивость (χ) соединений $M_2^{1}NbOCl_4$ ($M^1 = NH_4$, Rb и Cs) и $M_2^{1}NbOCl_4$ ($M^1 = Rb$ и Cs) измерена нами по методу Фарадея в температурном интервале от 80 до 300° K. Рассчитанные значения χ и эффективных магнитных моментов ($\mu_{\text{эфф}}$) представлены в табл. 1.

Установлено, что зависимость $\chi = f(T)$ не описывается законом Кюри ни для одного из исследованных соединений. Пля комплексов M₂¹NbCl₆ уже при комнатной темпе-(1,14-1,18 м.Б.) оказыратуре $\mu_{\theta \Phi \Phi}$ ваются существенно ниже чисто спиновой величины для d_i -конфигурации (1,73 м.Б.). При охлаждении образцов до 80° K µ_{эфф} монотонно уменьшается. постигая 0.7-0.8 м.Б. Такое магнитное поведение характерно и для других изученных соединений ${
m Nb^{\scriptscriptstyle {
m IV}}}$ с квазиэктаэдрическим окружением центрального атома $\binom{1}{2}$. Наблюдаемые аномалии магнитных свойств, по мнению авторов (1, 2), обусловлены преимущественно эффектом возму-

 $\begin{array}{c} {\bf T} \, \, {\bf a} \, \, {\bf f} \, \, {\bf n} \, {\bf u} \, \, {\bf u} \, \, {\bf u} \, \, {\bf a} \, \, \, {\bf 1} \\ \\ {\bf Maгнитная} \, \, {\bf восприимчивость} \, \, {\bf coeдинений} \, \\ {\bf Nb}^{{\bf IV}} \, * \end{array}$

Соединение	T, °K	х _м ·10 ⁶ (ед. CGSM)	^µ эфф, м. Б.
Cs_2NbCl_6	296 190	596 668	1,18 1,01
	125 79	789 934	$0,89 \\ 0,76$
$\mathrm{Rb_2NbCl_6}$	294	551	1,14
	206	591 673	$^{1,00}_{0,85}$
(NITT) NIL (II	79	876	0,74
$(NH_4)_2NbCl_6$	$294 \\ 225$	543 630	$\frac{1,14}{1,06}$
	138	818	0,95
Rb_2NbOCl_4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1209 \\ 244$	$0,87 \\ 0,75$
	207	263 302	$0,66 \\ 0,56$
	79	360	0,48
Cs_2NbOCl_4	$\begin{vmatrix} 295 \\ 211 \end{vmatrix}$	433 454	1,01 0,87
	132	540	0,75
	l 7 9	669	0,66

^{*} Расчет диамагнитных поправок для $\mathbf{x_M^{'}}$ см (12). $\mu_{\partial \hat{\Phi} \hat{\Phi}} = 2.84$ ($\mathbf{x_M^{'}} \cdot T$)1/2 м. Б.

щения основного состояния $^2T_{2g}$ -сиин-орбитальным взаимодействием (4). Теоретический расчет температурной зависимости $\mu_{\text{эфф}}$ для терма $^2T_{2g}$ выполнен Фиггисом (4) с учетом параметров λ (константы спин-орбитального взаимодействия), Δ (энергия расщепления между орбитальными уровнями основного терма $^2T_{2g}$ низкосимметричной компонентой поля лигандов), k (фактора орбитального уменьшения, характеризующего степень делокализации неспаренного электрона центрального атома на атомы лигандов), а также параметра $v = \Delta/\lambda$.

Наши экспериментальные величины $\mu_{\text{эфф}}$ в исследованном температурном интервале удовлетворительно согласуются с теоретическими при следующем наборе указанных параметров: $\lambda \sim 400-500~\text{см}^{-1},~k \sim 1,~v=0.$

Значения λ сравнимы с таковыми и для других комплексов Nb^{IV} (1) и представляются вполне разумными. Вместе с тем величины Δ и k не могут быть обоснованы физической моделью и вызывают серьезные сомнения. Действительно, $\Delta = 0$ равнозначно требованию строго октаэдрической симметрии комплексного иона [NbCl₆]²⁻ с нулевым расщеплением орбитально вырожденного основного терма ${}^2T_{2g}$. Такая конфигурация уже вследствие эффекта Яна – Теллера энергетически менее выгодна, чем тетрагонально искаженный октаэдр (5). Кроме того, идеальное октаэдрическое расположение лигандов в координационной сфере комплексных соединений практически всегда искажается при конденсировании модекул в кристадлической решетке. Далее, величина параметра k=1 является указанием на чисто ионный характер связей Nb—Cl в обсуждамых соединениях. Однако в случае соединений 2-го и 3-го переходных периодов из-за больших значений радиальных составляющих волновых функций d-электронов эффекты ковалентности оказываются весьма существенными (6), что может быть подтверждено, в частности, наличием сверхтонкого расшепления от атомов лигандов в спектрах э.п.р. соответствующих соединений (7).

По этой же, вероятно, причине не будет строго выполняться (особенно при низких температурах) предположение о диамагнитной разбавленности парамагнитных ионов $\mathrm{Nb^{IV}}$, лежащее в основе всех расчетов Фиггиса (4). В таком случае параметры кристаллического поля, с которыми согласуются экспериментальные значения $\mu = f(T)$, могут оказаться в значительной степени формальными, маскирующими более сложную причину магнитных аномалий.

Исследование рентгенограмм порошков комплексов $M_2^{\rm I}$ NbCl₆ показало (²), что кристаллы гексахлорниобатов имеют кубическую решетку и принадлежат к структурному типу K_2 PtCl₆. Такая структура исключает возможность прямого спин-спинового взаимодействия Nb — Nb или сверхобмена через Cl-мостики, поскольку все атомы Cl являются концевыми. Вместе с тем в изоструктурном соединении K_2 IrCl₆ осуществляются косвенные обменные взаимодействия между ионами $Ir^{\rm IV}$ через мостики —Ir—Cl—Cl——Ir— (*). Не исключено, что аналогичный механизм обмена имеет место и в исследованных нами гексахлорниобатных комплексах, хотя «чистая» модель обменного взаимодействия между парамагнитными ионами со спинами $S={}^{\rm 1/}_2$ в полимерных цепочках (°) также оказалась неприменимой. Вероятнее всего, аномально низкий парамагнетизм обсуждаемых соединений обусловлен совокупными эффектами спин-орбитального и сверхобменного взаимодействия. Количественную оценку вклада каждого из эффектов можно получить лишь при надежном разбавлении в изоструктурной диамагнитной матрице.

Магнитные моменты оксихлоридных комплексов ниобия типа $M_2^{\rm I}$ NbOCl₄ уже при комнатной температуре более понижены по сравнению с чисто спиновой величиной, чем у гексахлорниобатов, и продолжают падать по мере дальнейшего охлаждения образца (см. табл. 1). Соединение NbOCl₂ вообще практически диамагнитно ($\chi_{\rm M}'=42\cdot 10^{-6}$ CGSM). В связи с низкой симметрией поля лигандов вокруг ионов $Nb^{\rm IV}$ из-за неэквивалентности лигандов спин-орбитальные эффекты не должны оказывать заметного влияния на магнитные свойства комплексов этого типа (4). Причиной аномально слабого парамагнетизма обсуждаемых соединений могут быть лишь спин-спиновые обменные взаимодействия. Обращает на себя внимание тот факт, что с увеличением радиуса катиона K^1 при переходе от рубидиевого комплекса к цезиевому наблюдается симбатное увеличение $\mu_{\text{эфф}}$ во всем исследованном температурном интервале. Отсутствие в и.-к. спектрах этих соединений полосы, отвечающей валентным колебаниям кратной связи Nb=O, указывает на мостиковые функции «ильных» атомов кислорода, че-

рез которые могут осуществляться сверхобменные взаимодействия между ионами $\mathrm{Nb^{IV}}$. Аналогичный фрагмент $\mathrm{Nb-O-Nb}$ имеется также и в структуре $\mathrm{NbOCl_2}$ (10). Но в кристаллической решетке этого соединения ионы $\mathrm{Nb^{IV}}$ могут магнитно взаимодействовать между собой еще и по связи $\mathrm{Nb-Nb}$, а также через $\mathrm{Cl-moctuku}$ (10), вследствие чего спины неспаренных электронов оказываются полностью скомпенсированными.

Как известно, магнитные свойства оксихлорида ванадия YOCl (также имеющего мостиковые атомы хлора и кислорода) и комплексов на его основе типа $M_3^{\rm I}{\rm YOCl_4}$ практически одинаковы (11), что указывает на неизменность в обоих случаях фрагмента структуры, обусловливающего наблюдаемые аномалии магнитных свойств. Иная картина магнитного поведения наблюдается в случае NbOCl₂ и его производных типа $M_2^{\rm I}{\rm NbOCl_4}$. При переходе от NbOCl₂ к комплексам указанного типа магнитная воспримчивость существенно возрастает, и этот рост, как уже отмечалось, симбатен увеличению радпуса катиона $M^{\rm I}$, т. е., в отличие от ванадиевых комплексов, в этом ряду ниобиевых соединений происходит перестройка структуры (возможно, разрыв связи Nb—Nb), сопровождающаяся уменьшением обменных взаимодействий в $M_2^{\rm I}{\rm NbOCl_4}$ по сравнению с NbOCl₄. Зависимость восприимчивости комплексов $M_2^{\rm I}{\rm NbOCl_4}$ от радиуса $M^{\rm I}$ указывает на то, что катион $M^{\rm I}$ в кристаллической решетке соединения играет роль своеобразного диамагнитного разбавителя.

Привлечение модели изотропного обмена в линейных цепочках парамагнитных ионов со спином $S={}^4/{}_2$ (9) для интерпретации магнитных свойств соединений $\mathrm{M}_{2}{}^{\mathrm{I}}\mathrm{NbOCl}_{4}$ оказалось безуспешным, поскольку зависимость $\mu=f(T)$ не описывается с одним значением обменного интеграла во всем исследованном интервале температур. По-видимому, несмотря на некоторое диамагнитное разбавление ионов $\mathrm{Nb}^{\mathrm{IV}}$ с помощью катионов MI , обменные взаимодействия в кристаллической решетке комплексов все еще имеют сложный анизотропный характер, и в настоящее время не существует теории, позволяющей количественно учесть такие явления.

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Поступило 17 X 1972

Московский физико-технический институт

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. W. A. Fowles, D. I. Tidmarsh, R. A. Walton, Inorg. Chem., 8, 631 (1969). ² I. B. Hamilton, R. E. McCarley, Inorg. Chem., 9, 1333 (1970). ³ И. С. Морозов, Н. П. Липатова, ЖНХ, 11, 1018 (1966). ⁴ В. N. Figgis, Trans. Farad. Soc., 57, 198 (1961). ⁵ И. Б. Берсукер, А. В. Аблов, Химическая связь в комплексных соединениях, Кишинев, 1962. ⁶ Ю. М. Удачин, Кандидатская диссертация, М., 1967. ⁷ Х. Куска, М. Роджерс, ЭПР комплексов переходных металлов, М., 1970. ⁸ В. N. Figgis, J. Lewis, F. E. Mabbs, J. Chem. Soc., 1961, 3138. ⁹ А. Еагпshaw, В. N. Figgis, J. Lewis, J. Chem. Soc. A, 1966, 10 H. Schäfer, H. G. Schnering, Angew. Chem., № 20, 833 (1964). ¹¹ В. Т. Калинников, А. И. Морозов и др., ЖНХ, 17, 675 (1972). ¹² Современная химия координационных соединений, ред. Дж. Льюнс и Р. Уилкинсон, гл. 6, ИЛ, 1963.