Доклады Академии наук СССР 1973. Том 210, № 1

УДК 552.16+549.62.64

ПЕТРОГРАФИЯ

Л. П. КАРСАКОВ

ПИРОП-БРОНЗИТ-СИЛЛИМАНИТОВЫЕ КРИСТАЛЛИЧЕСКИЕ СЛАНЦЫ ВОСТОЧНОГО СТАНОВИКА И УСЛОВИЯ ИХ МЕТАМОРФИЗМА

(Представлено академиком В. С. Соболевым 18 II 1972)

Ассоциация ортопироксена с силлиманитом встречается в метаморфических комплексах крайне редко. Ее устойчивость связана с высоким давлением и температурой (6, 9), и поэтому она представляет значительный интерес для изучения физических условий в глубинных частях земной коры. В литературе описан лишь гиперстен-силлиманитовый парагенезис. Нами в 1962 г. в низовьях рек Ток и Сивакан обнаружены пироп-бронзитсиллиманитовые и кордиерит-гранат-бронзит-силлиманитовые кварцсодержащие кристаллические сланцы.

Рассматриваемые бронзит-силлиманитовые сланцы встречены в породах гранулитового комплекса, названного нами чогарским. Этот комплекс метаморфизованные осадочно-вулканогенные (эклогитоподобные и другие сланцы основного состава, высокоглиноземистые гнейсы и сланцы, гранатовые гранулиты, кварциты, кальцифиры), основные и ультраосновные породы и чарнокитовые и другие гранитоиды. Породы чогарского комплекса обнажаются среди позднеархейских образований станового комплекса в виде глыб глубоко переработанного фундамента. Недиафторированные участки в глыбах сохраняются редко. Наиболее крупными глыбами чогарского комплекса являются Чогарская, расмоложенная в междуречье Маи-Половинной и Уды, и Сивакано-Токская в низовьях одноименных рек. Абсолютный возраст пород чогарского комплекса еще не определен, но первые данные для пироксена (обр. № 19^в/68) показали 3000±120 млн лет (К-Аг-метод, лаборатория Института геологии и геохронологии докембрия). Геология раннеархейских образований глыб более подробно рассмотрена в других работах автора (3, 4). Здесь отметим лишь, что бронзит-силлиманитовые сланцы залегают в виде прослоев и линз мощностью от сантиметров до нескольких десятков метров среди пироксеновых кварцитов, гранатовых гранулитов и эклогитоподобных сланцев, включающих также линзы и тела ультраосновных пород и кальцифиров.

Внешне бронзит-силлиманитовые сланцы представляют собой крупнозернистые темные буровато-серые породы с равномерным или полосчатым распределением минералов. Сложены они бронзитом, силлиманитом, гранатом, кварцем и кордиеритом. В качестве второстепенных минералов присутствуют калишпат, плагиоклаз, биотит, а из акцессорных — рутил, циркон, магнетит, шпинель. Структура их гранонематобластовая, при наличии кордиерита — венцовая. Бронзит образует тесные срастания с силлиманитом (обр. № $19^{\text{н}}/68$) или отделен от него кордиеритовой каемкой (обр. № $19^{\text{м}}/65$). Содержит округлые или закругленные чещуйки биотита и зерна силлиманита, плагиоклаза, кварца. Часто в бронзите наблюдается редкая сетка тонких включений, напоминающая структуру распада. Бронзит имеет резкий плеохроизм от зеленого (N_g) до красно-бурого (N_p). Химические анализы (%) бронзитов и гранатов приведены в табл. 1. Особенностью состава бронзита является высокое содержание глинозема и чермакита ($\sim 24\%$), низкая железистость. Содержание Al_2O_3 в обр. № 19"/68 превышает все известные для ортопироксенов (2).

Гранат малиновый, образует или трещиноватые зерна с округлыми включениями кварца, бронзита, силлиманита, рутила, редко светло-бурого биотита, магнетита и в одном случае зеленой шпинели, или же скелетные зерна от замещения кордиеритом. Гранаты характеризуются высокой магнезиальностью. В гранулитовых комплексах обычно преобладает альмандин, а в обр. № 19^в/68 содержание пиропа достигает 55%:

	Пироп	Альмандин	Гроссуляр	Спессартин	Андрадит
Обр. № 19 ^н /68	55,0	40,0	4,5	0,5	
Обр. № 19 ^м /65	45,0	51,7	_	0,3	3,0

На сводной диаграмме для гранатов (⁷) точка состава обр. № 19^н/68 несколько выходит за поле этой фации.

Судя по сводке Н. В. Соболева (7), гранат из обр. № $19^{\text{н}}/68$ не имеет аналога среди гранат-гиперстеновых пород. Силлиманит слагает призматические кристаллы длиной до 1-1.5 см, иногда располагающиеся в виде радиально-лучистых агрегатов в плоскости сланцеватости породы; $N_g=1.681$; $N_p=1.658$. Кордиерит как первичный равновесный минерал не встречается, а появляется местами как реакционный минерал вокруг граната, образуя гиперстен-кордиеритовые, кварц-кордиеритовые симплекти-

Таблица 1

	Обр. Л	№ 19 ^H /68	Обр. № 19 ^M /65			
	гранат	бронзит	гранат	бронзит		
$\begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ H_2O^+ \end{array}$	39,32 0,22 23,10 0,40 19,30 0,25 14,98 1,88 0,03 0,02 0,24	49,61 0,26 12,00 0,90 10,80 Сл. 25,08 0,44 0,02 0,04 0,40	39,90 0,09 21,17 0,85 24,25 0,15 11,90 0,10 0,12 0,26 0,12	47,64 0,25 9,18 0,90 17,28 0,07 23,28 0,75 0,08 0,24 0,12		
$\begin{array}{c c} \textbf{Cymma} & \\ N & \\ N_{g} & \\ N_{p} & \\ \hline \textbf{Fe} & \\ \hline \textbf{Fe+Mg} & \% \end{array}$	99,74 1,755 — — 42,4	99,55 1,701 1,685 20,6	99,91 1,776 — — 54,1	99,79 1,715 1,700 30,4		
Аналитики	В. Д. Бугрова, Е. Е. Зевелева, Р. А. Соколова					

Кристаллохимические формулы

Гранат из обр. № $19^{\rm H}/68$: $({\rm Mg_{1,86}Fe_{1,20}^{2+}Ca_{0,15}Mn_{0,02}Fe_{0,02}^{3+})_{3,05}Al_{2,03}(Si_{2,92}Ti_{0,01})_{2,93}O_{12}}$. Бронзит из обр. № $19^{\rm H}/68$: $({\rm K_{0,002}Na_{0,001}Ca_{0,017}})_{0,02}{\rm Mg_{1,325}Fe_{0,321}^{2+}Fe_{0,02}^{3+}Ti_{0,007}Al_{0,232}})_{1,97}$. $\cdot ({\rm Si_{1,76}Al_{0,24}})_{2,00}O_{6}$.

Гранат из обр. № $19^{\text{M}}/65$: $(\text{Mg}_{1,35}\text{Fe}_{1,55}^{2+}\text{Ca}_{0,09}\text{Mn}_{0,01})_3(\text{Al}_{1,97}\text{Fe}_{0,07}^{3+})_{1,97}(\text{Si}_{2,99}\text{Ti}_{0,01})_3\text{O}_{12} + \text{Si}_{0,05}$

Бронзит из обр. № $19^{\text{M}}/65$: $(K_{0,011}Na_{0,006}Ca_{0,03})_{0,05}(Mg_{1,275}Fe_{0,532}^{2+}Fe_{0,025}^{3+}Mn_{0,002}Ti_{0,007} - Al_{0,149})_{1,99}(Si_{1,75}Al_{0,25})_{2,00}O_6.$

Примечание. Обр. № 19¹¹/68 — гранат-бронзит-силлиманит-кварцевый сланец, р. Ток; № 19³¹/65 — биотит-кордиерит-гранат-бронзит-силлиманит-кварцевый сланец, р. Ток. ты, или же вокруг силлиманита. Нередко образование кордиерита сопровождается появлением в породе калишпата, иногда мелких чешуек биотита. У кордиерита $N_g = 1,552$; $N_p = 1,545$. Кварц составляет основную массу породы, часто содержит мельчайшие иголки рутила (?).

Таким образом, составы минералов описываемых сланцев своеобразны и не имеют аналогов в описанных в литературе парагенезисах ортопироксен— силлиманит. Поскольку они фиксируют условия образования минералов, интересно сопоставить наши наблюдения в природных парагенезисах

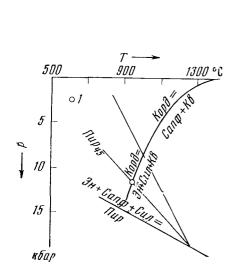


Рис. 1. Экспериментальные кривые устойчивости пиропа, альмандина и магнезиального кордиерита. Точка относится к обр. № 19^м/68

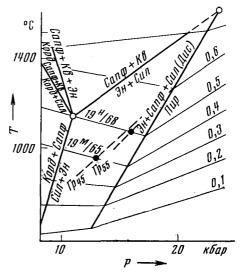


Рис. 2. Деталь P-T-диаграммы системы ${
m MgO-Al_2O_3-SiO_2}$ (по Н. Л. Добрецову). Тонкие линии— изолинии содержания Al в ортопироксене: $0.1;\ 0.2$ и т. д.— на шесть атомов кислорода

с имеющимися экспериментальными данными и оценить условия метаморфизма пород чогарского комплекса. На рис. 1 показаны результаты экспериментального изучения устойчивости магнезиального кордиерита, пиропа и альмандина (1, 8, 10 , 11). Если нанести на эту диаграмму линию граната обр. № 19^м/65 с содержанием пиропа 45%, то она пересечет кривую устойчивости кордиерита в точке P=11,3 кбар и $T=950^\circ$. Поскольку в этом образце наблюдается превращение алюмобронзит + силлиманит + + кварц \rightarrow кордиерит, названные P и T отражают условия данной реакции. Очевидно, что метаморфизм пород чогарского комплекса происходил при еще высоких давлении и температуре. Условия их прогрессивного метаморфизма можно оценить по содержанию Al₂O₃ в бронзите из парагенезиса с пиропом в обр. № 19^н/68, в котором нет кордиерита и не наблюдается реакционного замещения минералов. Для этого мы воспользуемся P-T-диаграммой системы MgO-Al $_2$ O $_3$ -SiO $_2$, предложенной Н. Л. Добрецовым (2). На ней (рис. 2) показаны изолинии содержания Аl в маложелезистых ортопироксенах, примерно соответствующие экспериментальным данным Хенсена и Эссена * (12). По этой диаграмме с учетом содержания в гранате 55% пиропа, а в бронзите 0,5 формульных единиц А1 получим для обр. № $19^{\text{H}}/68$: P = 16 кбар и $T = 1070^{\circ}$. Следовательно, породы чогарского комплекса метаморфизованы в условиях бескордиеритовой субфации (гранулитовой фации) при высоком давлении и на большой глубине. По глубинности условий образования чогарский комплекс превосходит сутамскую субфацию, наиболее глубинную из известных в настоящее

^{*} По экспериментальным даиным оценки давления будут на 1,5-2 кбар ниже.

время, в которую объединены метаморфические комплексы с наиболее магнезиальными ассоциациями граната и кордиерита (5). В породах чо-

гарского комплекса кордиерит вообще не устойчив.

Учитывая совокупность приведенных выше данных, можно полагать, что ниже сутамской субфации глубинности следует выделить еще одну—чогарскую, отвечающую переходу от гранулитовой фации к эклогитовой. Соответствующие ей условия могли возникать, по-видимому, в основании континентальной коры. Благодаря постоянной тенденции Становой глыбово-складчатой области к воздыманию—с конца раннего протерозоя до наших дней—глубинные породы чогарского комплекса подверглись значительной эрозии и оказались лежащими на поверхности.

Дальневосточное территориальное геологическое управление Хабаровск Поступило 24 I 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ф. Р. Войд, Дж. Л. Ингланд, В сборн. Вопросы теоретической и экспериментальной петрологии, ИЛ, 1963. ² Н. Л. Добредов, Ю. Н. Кривенко и др., Породообразующие пироксены, «Наука», 1971. ³ Л. П. Карсаков, В сборн. Матер. по геологии и полезным ископаемым Якутской АССР, № 19, Якутск, 1971. ⁴ Л. П. Карсаков, В сборн. Новости геологии Якутии, в. 2, Якутск, 1972. ⁵ А. А. Мараку шев, Проблемы минеральных фаций метаморфических и метасоматических горных пород, «Наука», 1965. ⁶ А. А. Мараку шев, В. А. Кудрявдев, ДАН, 164, № 1 (1965). ⁷ Н. В. Соболев, Парагенетические типы гранатов, «Наука», 1964. ⁸ В. Шрейер, Дж. Шерер, В сборн. Вопросы теоретической и экспериментальной петрологии. ИЛ, 1963. ⁹ В. В. Хлестов, ДАН, 154, № 4 (1964). ¹⁰ Н. S. Yoder, G. A. Chinner, Almandite — Pyrope — Water System at 10000 bar. Carnegie Inst. Wash., Year Book, № 59 (1960). ¹¹ W. Schreyer, H. S. Yoder jr., Instability of Anhydrous Mg-Cordierite of High Pressures. Carnegie Inst. Wash., Year Book, № 59 (1960). ¹² В. J. Hensen, E. J. Essene, Contr. Mineral. Petrol., **30**, № 1 (1971).