УДК 547.159.2 <u>ХИМИЯ</u>

Член-корреспондент АН СССР В. В. КОРШАК, Н. И. БЕКАСОВА, В. В. ВАГИН, А. А. ИЗЫНЕЕВ

РЕГУЛИРОВАНИЕ ПРОЦЕССА РОСТА МАКРОМОЛЕКУЛЫ В НЕРАВНОВЕСНОЙ ПОЛИКОНДЕНСАЦИИ

Обычно регуляторами процесса роста цепи как в равновесной, так и в неравновесной поликонденсации являются вводимые в сферу реакции различные монофункциональные вещества (¹). Нами было обнаружено, что регулирование процесса роста макромолекулы в неравновесной поликонденсации дихлорангидрида м-карборандикарбоновой кислоты с ароматическими тетраминами можно осуществлять добавлением различных количеств солянокислого пиридина.

Мы нашли, что при проведении неравновесной поликонденсации дихлорангидрида m-карборандикарбоновой кислоты с ароматическими тетраминами в растворе пиридина в интервале температур $-30 \div -5^{\circ}$ в течение 1-2 мин. образуются нерастворимые сшитые полимеры. Вероятной причиной этого является одновременное взаимодействие почти всех аминогрупп тетрамина с дихлорангидридом m-карборандикарбоновой кислоты по схеме:

$$H_{2}N$$
 R
 NH_{2}
 NH_{2

Однако при проведении этой реакции в тех же условиях в присутствии солянокислого пиридина происходит образование растворимых *м*-карборансодержащих полиаминоамидов:

$$\begin{bmatrix} O & O \\ HN & -R & -NH - CCB_{10}H_{10}CC \end{bmatrix}$$

Структура полученных м-карборансодержащих сшитых полимеров и полиаминоамидов находится в соответствии с данными элементарного анализа (см. табл. 1). Кроме того, наличие первичных аминогрупп в полиаминоамидах установлено присутствием в и.-к. спектрах характерной для аминогрупп полосы поглощения в области 3400 см⁻¹, а также их способностью взаимодействовать с хлорангидридами карбоновых кислот (хлористым бензоилом, хлорангидридом м-карборанмонокарбоновой кислоты), ангидридами карбоновых кислот (фталевым, пиромеллитовым) и образовы-

вать солянокислые соли, что подтверждается данными элементарного анализа.

По-видимому, в присутствии солянокислого пиридина процессу поликонденсации предшествует равновесная реакция:

$$\begin{array}{c} H_2N \\ H_2N \\ \end{array} \begin{array}{c} NH_2 \\ NH_2 \end{array} \begin{array}{c} HCI \\ NH_2N \\ \end{array} \begin{array}{c} NH_3CI \\ NH_2 \end{array} \begin{array}{c} NH_3CI \\ \end{array} \begin{array}{c} NH_3C$$

В процессе этой реакции изменяется реакционная способность аминогрупп тетрамина (2), что далее оказывает влияние на следующие этапы

поликонденсации. Так как реакция (II) является равновесной, то увеличение количества солянокислого пиридина должно привести к смещению равновесия этой реакции вправо.

Таким образом, если в отсутствие солянокислого пиридина образуются полимеры сшитой структуры, то по мере увеличения количества солянокислого пиридина можно ожидать образования вначале растворимых разветвленных полимеров, а затем и полимеров линейной структуры.

Для проверки этого предположения поликонденсацию ароматических тетраминов с дихлорангидридом м-карборандикарбоновой кислоты проводили в пиридине, содержащем различные количества хлоргидрата

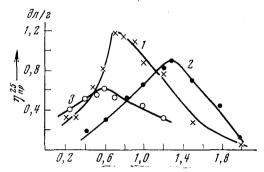


Рис. 1. Влияние количества солянокислои соли пиридина на вязкостные характеристики полимеров, полученных взаимодействием эквимолекулярных количеств дихлорангидрида марборандикарбоновой кислоты и 3,3',4,4'-гетраминодифенилоксида (1), 3,3',4,4'-тетраминодифенилоксида (2), 3,3',4,4'-тетраминодифенилметана (3). $T_{\text{реакд}} = -30^{\circ} \text{ C}$, $C_{\text{р.смесп}} = -0.1$ мол/л. По оси абсцисс показано молярное отношение хлоргидрата пиридина к тетрамину

пиридина. Результаты этой поликонденсации представлены на рис. 1. Во всех трех случаях с увеличением количества солянокислого пиридина до определенного значения наблюдается рост вязкостных характеристик полимеров, причем оптимальное количество хлоргидрата пиридина зависит

Таблица 1 Сравнение состава полимеров, полученных на основе дихлорангидрида м-карборандикарбоновой кислоты и ароматических тетраминов в среде

пиридина без добавления хлоргидрата пиридина (I) и при его добавлении (II)

Звено полимера	R	Найдено, %				Вычислено, %			
		С	Н	В	N	С	н	В	N
1	-0-	41,27	5,14	31,76	10,42	38,58	5,10	34,78	9,07
	-CH ₂	42,64	5,31	31,12	9,87	40,61	5,17	34,82	9,04
	-	41,84	5,06	32 ,7 5	9,06	38,42	5,13	34,62	8,97
	-SO ₂ -	37,17	4,71	30,48	10,14	35,80	4,48	32,32	8,36
	-0-	44,67	5,44	26,58	12,46	45,13	5,23	25,41	13,12
	-CH2	48,12	5,19	24,98	12,81	48,28	5,66	24,44	13,25
H ₂ N NH ₂	-	45,29	5,73	27,72	10,96	46,83	5,37	26,36	13,65
\perp	$ _{-SO_2-} $	39,96	5,10	22,99	11,34	40,51	4,64	22,75	11,81

от природы исходного тетрамина и равняется 0,6-1,3 моля на 1 моль исходного тетрамина. При дальнейшем увеличении количества солянокислого пиридина происходит уменьшение вязкостных характеристик полимеров, а при увеличении его содержания до 2 молей на моль тетрамина полимеры вообще не получаются. Очевилно, аминогруппа, солеобразно связанная с

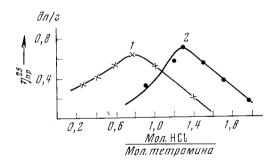


Рис. 2. Влияние количества солянокислой соли тетрамина, взятой в молях HCl на моль тетрамина, на вязкостные характеристики полимеров, полученных взаимодействием эквимолекулярных количеств дихлорангидрида м-карборандикарбоновой кислоты и 3.3',4,4'-тетраминодифенилоксида (1) и 3.3',4,4'-тетраминодифенилсульфона (2). $T_{\rm реакц} = -30^{\circ}$ C, $C_{\rm р.смеси} = 0.1$ мол/л

молекулой хлористого водорода, неспособна конкурировать по своей реакционной способности со свободными аминогруппами и поэтому не взаимодействует с хлорангидридом дикарбоновой кислоты. В этом заключается механизм, посредством которого солянокислый пиридин осуществляет свое действие.

На первом этапе реакции происходит уменьшение функциональности тетрамина

$$\begin{array}{c} \text{H}_2\text{N} \\ \text{H}_2\text{N} \\ \text{H}_2\text{N} \end{array} + . \\ \begin{array}{c} \text{HCI} \\ \text{N} \\ \text{H}_2\text{N} \end{array} + \\ \begin{array}{c} \text{NH}_3\text{CI} \\ \text{NH}_2 \\ \end{array} + \\ \begin{array}{c} \text{NH}_3\text{CI} \\ \text{NH}_2 \\ \end{array}$$

Далее происходит рост полимерной цепи по реакции:

$$\begin{array}{c} \text{H}_2\text{N} \\ \text{CIH}_3\text{N} \\ \text{NH}_3\text{CI} \\ & \bullet \\ \end{array} \\ + \begin{array}{c} \text{CICOCB}_{10}\text{H}_{10}\text{CCOCI} \\ \\ \bullet \\ \bullet \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \text{HN} \\ \end{array} \\ \begin{array}{c} \text{NH}_3\text{CI} \\ \text{NH}_2\text{CCB}_{10}\text{H}_{10}\text{CCC} \\ \\ \bullet \\ \end{array} \\ \begin{array}{c} \text{CIH}_3\text{N} \\ \text{NH}_2\text{CCB}_{10}\text{H}_{10}\text{CCC} \\ \\ \bullet \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \text{NH}_2\text{CCB}_{10}\text{H}_{10}\text{CCC} \\ \\ \bullet \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \text{NH}_2\text{CCB}_{10}\text{H}_{10}\text{CCC} \\ \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \text{-HCI} \\ \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \text{-HCI} \\ \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \text{-HCI} \\ \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \\ \text{-HCI} \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \\ \text{-HCI} \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \\ \text{-HCI} \\ \end{array} \\ \begin{array}{c} \text{-HCI} \\ \\ \end{array} \\ \begin{array}{c} \text{-$$

Обрыв полимерной цепи возможен двумя путями:

$$\begin{array}{c} \text{CIH}_{3}\text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\$$

Из изложенного видно, что в процессе образования растворимых карборансодержащих полиаминоамидов хлоргидрат пиридина выполняет роль поставщика хлористого водорода и, по-видимому, может быть заменен другими солянокислыми аминами, в частности солянокислым тетрамином. Действительно, при проведении поликонденсации в растворе пиридина эквимолярных количеств дихлорангидрида м-карборандикарбоновой кислоты и смеси тетрамина и солянокислого тетрамина образуются полимеры, растворимость и вязкостные характеристики которых зависят от соотношения количеств тетрамина и солянокислого тетрамина (см. рис. 2). Следует отметить, что оптимальные количества солянокислого тетрамина в исходной смеси (при расчете в молях НСІ на моль тетрамина, взятого в реакцию) соответствуют оптимальным количествам солянокислого пиридина (ср. кривые 1 и 2 рис. 1 с кривыми 1 и 2 рис. 2). Это подтверждает наше предположение, что действующим фактором является хлористый водород.

Растворимые полимеры с максимальными вязкостными характеристиками были получены в интервале температур $-30 \div -20^\circ$ и концентрации исходных веществ 0,1 мол/л. При проведении поликонденсации при комнатной температуре наблюдается понижение вязкостных характеристик полимеров. Изменение концентрации исходных веществ в пределах 0,1-0,25 мол/л при оптимальном содержании хлористого водорода в реакционной смеси и температуре $-30 \pm 20^\circ$ не влияет на значение вязкостных характеристик полимеров.

Институт элементоорганических соединений Академии наук СССР Москва Поступило 1 XI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 В. В. Кор m а к, С. В. Виноградова, Равновесная поликонденсация, «Наука», 1968, стр. 118. $^2\Pi.$ У. Мор ган, Поликонденсационные процессы синтеза полимеров, Л., 1970, стр. 130.