УДК 541.123.38

ХИМИЯ

А. М. СУХОТИН, Э И. АНТОНОВСКАЯ, Е. В. СГИБНЕВ, И. И. КОРНИЛОВ, В. В. ВАВИЛОВА

ПОВЕДЕНИЕ КИСЛОРОДНЫХ СОЕДИНЕНИЙ ТИТАНА В ВОДОРОДЕ

(Представлено академиком И. В. Тананаевым 22 ІХ 1972)

Известно тормозящее влияние кислорода, растворенного в металле, а также поверхностных окисных фаз на газонасыщение титановых сплавов в водороде $(^1,^2)$. Отмечается, что при окислении титана и его сплавов в атмосфере кислорода или воздуха образуется окалина, состоящая в основном из двуокиси TiO_2 , в форме рутила $(^{3-5})$. При недостатке кислорода в системе возможно образование низших окислов Ti_2O_5 и Ti_5O_9 , наряду с TiO_2 (6). В работах ($^{7-9}$) указывается, что кроме TiO_2 в состав окалины вхолит TiO_2 .

Исследованиями Дэвиса и Бриченалла (10) установлено присутствие в окисленном образце на поверхности Ti_2O_3 . Дядченко при анализе поверхностных фаз, образующихся при окислении титана, получил смесь рутила с небольшими количествами Ti_3O_5 (11). Было высказано предположение, что окисные фазы определенного состава, находясь на его поверхности, могут защищать металл от насыщения.

Кофстад (12) отмечает, что в процессе окисления титана, после того как концентрация кислорода в слое металла, прилегающего к поверхности раздела металл — окисел, достигает значения, отвечающего формуле $\mathrm{TiO}_{0.55} \sim (\mathrm{Ti}_3\mathrm{O})$, дальнейшее окисление и растворение кислорода создают в металле значительные напряжения, приводящие к появлению трещин, что может ухудшить защитные свойства поверхностных окисных фаз. В связи с изложенным, представляло интерес исследовать взаимодействие различных кислородных соединений титана с водородом при повышенных температурах и давлениях.

Кислородные соединения титана, содержащие от 5 до 25 ат. % кислорода, были выплавлены из иодидного титана и лигатуры Ti — O (с содер-

Таблица 1 Газонасыщение кислородных соединений титана в водороде при 600°, давлении 100 кг/см², длительности опыта 48 час.

№№ п.п.	Характери- стика исход- ных фаз		При-	Содержание водорода пос- ле опыта		Колич. обра- зовавшейся воды		Общий состав	Фазовый состав после
	со- держ. О, ат.%	фазо- вый состав	вес,	вес. %	ат. %	% от исх. фазы	% от исх. ко- лич. О	образдов после опыта	чету из аналитиче- ских данных)
1 2 3 4 5 6 7 8	5 14,3 17,0 20,0 22,0 25,0 33,0 50,0 66,7	Ti ₁₉ O Ti ₆ O Ti ₅ O Ti ₄ O Ti ₃ O Ti ₂ O Ti _O TiO ₂	4,0 2,18 2,02 1,75 1,45 1,13 0,31 0,008 0,003	4,05 2,6 2,07 1,8 1,51 1,18 0,34 0,01 0,003	67,8 57,2 51,4 47,8 43,4 37,4 14,6 0,5 0,15	0,02 0,06 0,07 — 0,576 0,45 0,11 0,00	1,0 1,0 1,0 - 5,1 2,8 0,39 0	Ti ₁₉ OH _{37,5} Ti ₆ OH _{7,87} Ti ₅ OH _{5,3} Ti ₄ OH ₄ Ti _{3,5} OH ₃ Ti ₃ OH _{1,9} Ti ₂ OH _{0,4} TiO	Ti ₂ O; 47TiH _{2,0} Ti ₂ O; 4TiH _{1,97} Ti ₂ O; 3TiH _{1,77} Ti ₂ O; 2TiH ₂ Ti ₂ O; 1,5TiH ₂ Ti ₂ O; TiH _{1,9} Ti _{1,8} O; 0,2TiH ₂

жанием кислорода 15,8 вес. %) в дуговой печи с нерасходуемым электродом в атмосфере аргона. Затем сплавы подвергались гомогенизирующему
отжигу при 800° С в течение 1000 час. при остаточном давлении $1 \cdot 10^{-3}$ — 10^{-4} мм рт. ст. Сплавы, содержащие более 33 ат. % кислорода, были синтевированы путем спекания смеси мелкоизмельченных порошков TiO_2 и Tiв вакуумной печи при $1500-1600^{\circ}$ и остаточном давлении $1 \cdot 10^{-5}$ мм рт. ст.
в течение 30 мин. (13). Чистота полученных окислов подтверждена рентгеноструктурным анализом. Свойства кислородных соединений титана
описаны в работах ($^{14-16}$). Опыты по взаимодействию субоксидов Ti_6O , Ti_3O и Ti_2O и окислов титана ^{4}TiO и TiO_2 с чистым водородом проведены
при температуре 600° , давлении 100 кг/см 2 и длительности 48 час. При

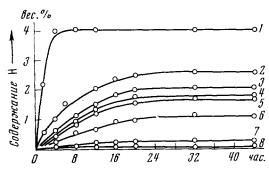


Рис. 1. Кинетика газонасыщения кислородных соединений титана в водороде при температуре 600° С, давлении 100 кг/см². I-5% О; 2-14,3% О; 3-17% О; 4-20% О; 5-22% О; 6-25% О; 7-33% О; 8-66,7% О

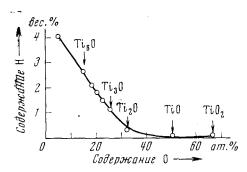


Рис. 2. Зависимость равновесного насыщения водородом кислородных соединений титана от их состава при температуре 600° С, давлении 100 кг/см² и длительности опыта 48 час.

указанных условиях исследована кинетика насыщения водорообразцов кислородных дом соединений титана и определены в них концентрации водорода при максимальном насыщении. В процессе наводороживания субоксидов и окислов титаустановлено образование воды, количество которой определялось следующим образом: из реакционного пространства после опыта выдувалтщательно осушенным гелием и пропускался через специальный вымораживатель ловушку, охлажденную жидким азотом. Ловушка взвешивалась до и после опыта. Привес соотколичеству образоветствовал вавшейся воды.

Полученные данные приведены в табл. 1 и на рис. 1 и 2. Как видно, скорость и уровень наводороживания окислов титазависит от содержания в них кислорода. Так, например, содержании 5 ат. % киспоследний лорода В титане насыщается водородом практически как чистый титан и содержание в нем водорода составляет 67,8 ат.%. Субоксиды Ti₆O и Ti₃O поглощают водород значительно меньше. Газона-

сыщение Ti_2O составляет 14,5 ат.%, а TiO лишь 0,44 ат.%. Однако следует отметить, что привес образцов Ti_6O и др. меньше, чем содержание в них водорода, определенное анализом. Последнее связано с тем, что они частично восстанавливаются водородом до воды, которая удаляется из образца. Во всех образцах кислородных соединений титана, содержащих до 33 ат.% кислорода, после опыта был обнаружен с помощью рентгеноструктурного анализа гидрид титана TiH_2 . Используя данные химического анализа, рассмотрим состав фаз, образующихся при взаимодействии водорода с субоксидами, исходя из того, что часть титана связывается в гидрид, близкий по составу к TiH_2 . Нетрудне показать, что оставщаяся фаза во всех случаях представляет собой Ti_2O . Соответствующие данные представлены в табл. 1. Отношение TiH_2/Ti_2O убывает с увели-

чением содержания кислорода. При взаимодействии субоксидов Ti с водородом в наших условиях весь титан, избыточный по сравнению с составом Ti₂O, гидрируется до TiH₂. Можно предположить, что в процессе наводороживания при 600° происходит перераспределение атомов кисло-

рода в кристаллической решетке.

Учитывая полученные результаты, можно понять, почему окисные фазы, образующиеся на поверхности титана и его сплавов при 500—600° под действием водорода (100 кг/см²), содержащие примесь до 0,3% О₂, состоят из окислов титана Ti₂O, TiO₂ и др., но не содержат субоксидов Ti₅O и Ti₃O. Последнее утверждение следует из наших многочисленных опытов по рентгеноструктурному анализу таких образований на сплавах ВТ1-1, AТ-2, ОТ4-1, TC-5.

Становится очевидным, что образование субоксидов в этих условиях невозможно, так как они полностью подвергаются диспропорционированию водородом на TiH_2 и Ti_2O . По характеру взаимодействия с водородом

все субоксиды напоминают металлический титан.

Низший стехиометрический окисел титана Ti_2O также малоустойчив по отношению к гидрированию, он поглощает до 14.6 ат.% водорода. В структурном и химическом отношении Ti_2O занимает промежуточное положение между субоксидами и окислами. При переходе Ti_2O к TiO стойкость в водороде резко, скачкообразно, повышается и становится максимальной для TiO_2 . В том же направлении изменяется и стойкость окислов по отношению к отщеплению кислорода в форме H_2O . Степень превращения в H_2O кислорода субоксидов соизмерима с той же величиной для Ti_2O . Двуокись титана вообще не вступает в эту реакцию. Полученные данные показывают, что среди всех соединений, существующих в системе Ti-O, максимальной стабильностью обладает высший окисел — TiO_2 . Можно полагать, что именно этот окисел в максимальной степени способен тормозить взаимодействие титана с водородом при $500-600^\circ$ и давлении 100 кг/см².

Институт метадлургии им. А. А. Байкова Академии наук СССР Мосьва Поступило 14 IX 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Ливанов, А. А. Буханова, Б. А. Колачев, Водород в титане, М., 1962. ² R. Наућеѕ, Ј. Inst. Metals, 89, 7, 249 (1961). ³ П. Кофстад, Высокотемпературное окисление металлов, М., 1964. ⁴ W. Kinna, W. Krorr, Zs. Metall-kunde, 47, 118 (1956). ⁵ А. Е. Јепкіпѕ, Ј. Inst. Metals, 82, № 1, 213 (1953—1954). ⁶ С. Г. Майков, В. А. Резниченко, Сборн. Проблемы металлургии титана, Изд. АН СССР, 1967, стр. 64. ⁷ H. S. Richardson, N. J. Grant, Trans. AIME, 200, 69 (1954). ⁸ P. I. Conjeand, Rech. Centre Nat. Res. Sci., 32, 273 (1955). ⁹ P. H. Morton, W. M. Baldwin, Trans. Am. Soc. Metals, 45, 1004 (1953). ¹⁰ М. Н. Davies, С. Е. Brichenall, Trans. AIME, 191, 877 (1951). ¹¹ М. Г. Дядченко, Докл. АН УССР, № 4, 445 (1958). ¹² P. Kofstad, P. Andersson, Krudtaa Less Сошт. Металлов переходных групп с кислородом, «Наука», 1967. ¹⁴ А. С. Бай, Д. И. Лайнер и др., Окисление титана и его сплавов, М., 1970. ¹⁵ Е. S. Натрѕ, Н. D. Кеssler, М. Напѕец, Тганз. Ат. Soc. Metals, 45, 1008 (1953). ¹⁶ Окисление металлов, 2, под ред. Ж. Бенара, М., 1969.