УДК 512.25/26

MATEMATUKA

А. А. КАПЛАН

ХАРАКТЕРИСТИЧЕСКИЕ СВОЙСТВА ШТРАФНЫХ ФУНКЦИЙ

(Представлено академиком Л. В. Канторовичем 28 IX 1972)

Пусть f, g^1, g^2, \ldots, g^m — выпуклые функции, заданные в пространстве R^n ; $\Omega = \{x: g^j(x) \leq 0, \ j=1,2,\ldots,m\}$ — телесный компакт. В качестве исходной рассматривается задача минимизации функции f на множестве Ω .

Введением штрафов за выход из множества Ω решение этой задачи может быть сведено к последовательному решению вспомогательных задач на безусловный экстремум. Именно, выбирая подходящим образом функции штрафа Φ_k , $k=1,2,\ldots$, можно добиться, чтобы при безусловной минимизации функций $F_k(x)=f(x)+\Phi_k(x)$, $k=1,2,\ldots$, соответствующая последовательность точек минимума $\{x^k\}$ имела предельные точки, каждая из которых доставляла бы решение исходной задачи.

Весьма общую характеристику функций штрафа для задач указанного

вида дает следующая

Теорема* 1. Пусть Φ_k — выпуклые функции,

1) $\lim \Phi_k(x) = 0$, ecau $x \in \operatorname{int} \Omega$;

2) $\lim_{k\to\infty} \Phi_k(x) = +\infty$, ecau $x \notin \Omega$.

Тогда, начиная с некоторого K, функции $F_k(x) = f(x) + \Phi_k(x)$ достигает своего безусловного минимума. Последовательность точек минимума функций F_k , $k \geqslant K$, имеет предельные точки; любая предельная точка этой последовательности принадлежит множеству Ω и доставляет минимум f на Ω .

Доказательство. Сопоставим произвольному $\delta > 0$ выпуклое множество $\Omega_{\delta} = \{x: \rho(x,\Omega) \leq \delta\}$, где $\rho(x,\Omega) = \inf_{u \in \Omega} \|x-y\|$, и рассмотрим множество $\Omega_{\delta_1} \setminus \Omega_{\delta_1}$, считая, что $0 < \delta_1 < \delta_2$, Пусть S — телесный многогранник, $S = \inf \Omega$. Фиксируя произвольным образом $x^1 \in \inf S$, $u \in Q = \frac{\Omega_{\delta_1} \setminus \Omega_{\delta_1}}{2}$ (черта означает замыкание), выберем на отрезке с концами x^1 и и точку $x^2 \in \inf (\Omega_{\delta_1} \setminus \Omega)$. Множество $S' = \{z = x^2 + \lambda(x^2 - x) : \lambda > 0, x \in \inf S\}$ содержит точку u с некоторой окрестностью U.

В силу условий теоремы, при фиксированных $\varepsilon > 0$ и $M > \varepsilon$ можно указать номер K^{ι} , начиная с которого

$$\max_{x \in S} \Phi_k(x) < \varepsilon, \quad \Phi_k(x^2) > M.$$

Ввиду выпуклости функций Φ_k отсюда следует, что при $k \ge K^i$ неравенство $\Phi_k(x) > M$ имеет место для $x \in U$.

На основании приведенных рассуждений с учетом компактности *Q* можно гарантировать существование конечного покрытия

$$\{S^i\}, \quad i=1,2,\ldots,\nu; \quad \bigcup_{i=1}^{\nu} S^j \supset Q,$$

^{*} В (1) аналогичное утверждение доказано при существенно иных требованиях относительно функций f и Φ_k .

такого, что на каждом из множеств S^i , начиная с некоторого L^i , при $k\geqslant L^i$ имеет место неравенство $\Phi_h(x)>M$. Следовательно, при $k\geqslant L$, где $L = \max L^i$, это неравенство будет выполняться на всем Q.

Поскольку функция f ограничена на Ω_{δ_2} , ясно, что при достаточно большом k функция F_k должна достигать своей точной нижней грани, причем $\min \hat{F}_h(x) < F_h(y)$, если $y \in R^n \setminus \Omega_{\delta_0}$. Тем самым, из последова-

тельности $\{x^h\}$ можно выделить сходящуюся подпоследовательность $\{x^{h_j}\}$. Точка $\bar{x}=\lim x^{h_j}$, как легко видеть, должна принадлежать Ω .

Остается показать, что $f(\bar{x}) = \min_{x \in \Omega} f(x)$. Если $f(\bar{x}) > \min_{x \in \Omega} f(x)$, найдется точка $\overline{x} \in \operatorname{int} \Omega$ такая, что $f(\overline{x}) < f(\overline{x}) \ (f(\overline{x}) = f(\overline{x}) - a, \ a > 0)$. $\overline{\text{Тогда}}$ можно указать телесный многогранник $G \subset \operatorname{int} \Omega$ $(\overline{x} \notin G,$ $\overline{\{x+\lambda(x-x):\lambda>0\}}$ \cap int $\Omega\neq\phi$) и число J так, что при j>J для $x\in G$ имеют место неравенства

$$\Phi_{k_j}(x) > \Phi_{k_j}(x^{k_j}) + a/2.$$
 (1)

С другой стороны, так как G — многогранник, найдутся числа $\mu(k_i)$ такие, что для $x \in G$

$$\Phi_{k_j}(x) < a/\mu(k_j), \tag{2}$$

причем $\mu(k_j) \to \infty$ при $j \to \infty$.

Замечая теперь, что, как бы ни было мало $\delta > 0$, при достаточно больших ј мы имеем

$$\Phi_{k_{j}}(x) > -\delta,
\{ \overline{\overline{x}} + \lambda(\overline{\overline{x}} - x^{k_{j}}) : \lambda > 0 \} \cap G \neq \phi;$$
(3)

нетрудно показать, что соотношения (1), (2) и (3) противоречивы ввиду выпуклости функций Φ_h .

Как видно из приведенного доказательства, требование, чтобы функции

 Φ_k были выпуклы на всем R^n , может быть ослаблено.

Теорема 2. Заключение теоремы 1 имеет место, если выполнены условия 1) и 2), а функции Φ_h выпуклы в области $\Omega_b = \{x : \rho(x, \Omega) \leq \delta\}$ при некотором $\delta \geq 0$ и квазивыпуклы на всем R^n .

Следующая теорема, доказательство которой несложно, дает полезную информацию о характере приближения решений вспомогательных

задач к решению исходной задачи.

Теорема 3. Пусть выполнены условия теоремы 1 или 2 и, кроме того, для граничных точек множества Ω

$$\Phi_k(x) \geqslant C > 0, \quad k = 1, 2, \dots$$

Tог ∂a , начиная с некоторого K, точки $x^{\mathbb{A}}$ лежат внутри Ω .

Ниже формулируются дополнительные требования относительно функций Ф, при выполнении которых метод штрафов одновременно с решением исходной задачи по существу дает решение двойственной задачи. Результаты такого рода, но для штрафных функций специального типа (именно, $\Phi_h(x) = A_h G(x)$, где в зависимости от свойств функции G либо $A_h \to \infty$, либо $A_h \to 0$) ранее были получены Мак-Кормиком и Фиакко

В предположении о дифференцируемости функций $f, g^j, j = 1, 2, \ldots, m$, двойственная задача (см., например, (4)) состоит в отыскании максимума

функции

$$f(x) + \sum_{j=1}^{m} y_j g^j(x)$$

при ограничениях

$$y_j \geqslant 0, \quad j=1,2,\ldots,m,$$

$$\nabla f(x) + \sum_{j=1}^{m} y_j \nabla g^j(x) = 0.$$

Допустимое решение z исходной задачи и допустимое решение $x,\ y\ (y=(y_1,y_2,\ldots,y_m)')$ двойственной задачи связаны соотношением

$$f(z) \ge f(x) + \sum_{j=1}^{m} y_j g^j(x).$$
 (4)

Теорема 4. Пусть функции $f, g^j, j=1,2,\ldots,m$, дифференцируемы и существует точка \tilde{x} такая, что $g^j(\tilde{x})<0, j=1,2,\ldots,m$; функции Φ_k , $k=1,2,\ldots$, дифференцируемы и удовлетворяют условиям теоремы 1. Пусть также

$$abla\Phi_k(x) = \sum_{j=1}^m \Psi_k^j(x) \,
abla g^j(x),$$

где функции Ψ_k^j неотрицательны и непрерывны на R^n , и при любом j имеем $\lim_{k\to\infty}\Psi_k^j(\mathbf{z}^k)=0$, если $\overline{\lim}_{k\to\infty}g^j(z^k)<0$.

Tогда, обозначая $u_i^k = \Psi_k^j(x^k)$, можно утверждать, что

1) последовательность $\{u^k\}$, где $u^k = (u_1^k, \dots, u_m^k)'$, имеет предельные точки;

2) точка (\bar{x}, \bar{u}) , являющаяся пределом любой сходящейся подпоследовательности из $\{x^k, u^k\}$, доставляет решение двойственной задачи.

Доказательство. Отметим, что при наших предположениях в прямой и двойственной задачах существуют оптимальные решения, при подстановке которых неравенство (4) превращается в равенство.

Легко видеть, что в условиях теоремы точки (x^k, u^k) является допусти-

мой в двойственной задаче.

Пусть $x^* \in \text{int } \Omega$ — произвольная фиксированная точка. Из выпуклости f и $g^i, j = 1, 2, \ldots, m$,

$$f(x^*) - f(x^k) \geqslant (\nabla f(x^k), x^* - x^k) =$$

$$= \sum_{j=1}^m \Psi_k^j(x^k) (\nabla g^j(x^k), x^k - x^*) \geqslant \sum_{j=1}^m \Psi_k^j(x^k) (g^j(x^k) - g^j(x^*)).$$

Для точки $\overline{x} = \lim_{l \to \infty} x^{k_l}$ введем в рассмотрение множества

$$J^{1}(x) = \{j: g^{j}(\bar{x}) = 0\}, J^{2}(\bar{x}) = \{j: g^{j}(\bar{x}) < 0\}.$$

Ясно, что $\lim_{t\to\infty}u_j^{k_l}=0$ при $j\in J^2(\overline{x})$.

Далее, для достаточно больших l при $j \in J^1$ имеем

$$g^{j}(x^{k_{l}}) - g^{j}(x^{*}) > -1/2g^{j}(x^{*}) > 0,$$

и из соотношений

$$\begin{split} &f\left(x^{*}\right) - f\left(x^{k_{l}}\right) - \sum_{j \in J^{2}} \Psi_{k_{l}}^{j}\left(x^{k_{l}}\right) \left(g^{j}\left(x^{k_{l}}\right) - g^{j}\left(x^{*}\right)\right) > \\ &> - \sum_{j \in J^{1}} \Psi_{k_{l}}^{j}\left(x^{k_{l}}\right) \frac{g^{j}\left(x^{*}\right)}{2} \geqslant - \max_{j \in J^{1}} \frac{g^{j}\left(x^{*}\right)}{2} \cdot \sum_{j \in J^{1}} u_{j}^{k_{l}} \end{split}$$

видно, что $\sup u_j^{k_l} \leqslant c$, где c — некоторая константа.

Ввиду допустимости точек (x^h, u^h) утверждение теоремы следует отсюда непосредственно.

Замечание. Утверждение теоремы 4 сохраняет силу, если ослабить требование выпуклости Φ_k в плане теоремы 2.

Приведем в заключение два примера функций штрафа, удовлетворяющих теоремам 1 (или 2), 3 и 4 (с учетом замечания к ней), которые не укладываются в схему Мак-Кормика и Фиакко.

Таковыми являются следующие функции:

1)
$$\Phi_k(x) = \sum_{j=1}^m \exp\left[A_k^j g^j(x)\right]$$
, где $A_k^j \ge 0$, $A_k^j \to \infty$ при $k \to \infty$;

2)
$$\Phi_k(x) = \sum_{j=1}^m (\bar{g}^j(x) + 1)^k$$
, где k нечетные, $\bar{g}^j(x) = \frac{1}{M^j} g^j(x)$, а M^j —

достаточно большое положительное число (больше, нежели — $\min_{x \in \Omega} g^j(x)$).

Отметим, что первая из этих функций использовалась Моцкиным при решении системы линейных неравенств.

Институт математики Сибирского отделения Академии наук СССР Новосибирск Поступило 28 IX 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. С. Левитин, Б. Т. Поляк, Журн. вычислит. матем. и матем. физ., 6, № 5, 787 (1966). ² А. Fiacco, G. McCormix, Man. Sci., 10, № 2, 360 (1964). ³ А. Фиакко, Г. Мак-Кормик, Нелинейное программирование, М., 1972. ⁴ Ph. Wolfe, Quart. Appl. Math., 19, № 3, 239 (1961).