УДК 547.963.3:616.006.446.2

БИОХИМИЯ

Р. Э. КИМЕРАЛ, Н. А. ФЕДОРОВ

2'-0-МЕТИЛИРОВАНИЕ 18S и 28S рРНК ЛИМФОЦИТОВ ЧЕЛОВЕКА В НОРМЕ И ПРИ ХРОНИЧЕСКОМ ЛИМФОЛЕЙКОЗЕ

(Представлено академиком А. С. Спириным 23 Х 1972)

В покоящихся, нестимулированных лимфоцитах человека деградация виовь синтезированной 18 S рРНК происходит в 2 раза быстрее, чем 28 S рРНК (¹, ²). В результате потери 18 S рРНК отношение 28 S/18 S рРНК в покоящихся лимфоцитах составляет около 2, а скорость накопления рРНК в цитоплазме составляет около половины скорости синтеза 45 S рРНК в ядре. Стимуляция лимфоцитов фитогемагглютинином

 ${
m Puc.} \ 1. \ 2,8\,\% \ {
m поли-} \ {
m акриламидный} \ {
m гель.} \ {
m Paзделение} \ {
m pPHK}$

Стимуляция лимфоцитов фитогематглютинином (ФГА) приводит к резкому снижению потери вновь синтезированной 18 S рРНК и увеличению скорости транскрипции 45 S рРНК задолго до наступления S-фазы. На этом основании Купер (1, 2) предполагает связь между механизмом, регулирующим величину потери 18 S рРНК и делением. Лимфоциты больных хроническим лимфолейкозом, по сравнению с нормальными лимфоцитами, имеют запоздалую и меньшую реакцию на воздействие ФГА и других митогенов.

Метилирование рРНК происходит на уровне 45 S рРНК — общего предшественника 48 S и 28 S рРНК. В клетках млекопитающих около 80% метилированных производных нуклеозидов рРНК представлено в виде 2'-О-метилрибозидов (3). Метилирование рибозы значительно увеличивает прочность 3',5'-фосфодиэфирной межнуклеотидной связи к действию щелочей и рибонуклеаз. Разрыв таких межнуклеотидных связей, по-видимому, осуществлялся в клетке специфической 2'-О-метил-РНКазой (4).

Не исключена возможность, что 2'-О-метилирование рРНК ответственно за стабилизацию молекул 18 S и 28 S рРНК и тем самым может обусловливать различие в реакции нормальных и лимфолей-козных лимфоцитов на действие ФГА и других митогенов. В этой статье приведены данные сравнительного распределения метки между нуклеозид-2'-3'-монофосфатами и щелочестабильными олигонуклеотидами 18 S и 28 S рРНК лимфоцитов,

инкубированных с С14-(метил)-метионином.

Исследовали лимфоциты доноров и больных хроническим лимфолейкозом. Лимфоциты выделяли из только что взятой на гепарине крови в стерильных условиях (5). Клетки в количестве 2·108 инкубировали в 10 мл среды следующего состава: среда Игла 90%, инактивированная сыворотка группы АВ (IV) 10%, пенициллин 50 ед/мл, стрептомицин 50 ед/мл и глютамин. Приготовленную суспензию клеток переносили в чашку Кореля и добавляли 25 µС С14-(метил)-метионина («Атегsham», удельная активность 50 µС/ммоль). Про-

бы инкубировали при 37° 18 час., затем клетки отмывали физиологическим раствором. Из отмытых клеток выделяли РНК по методу Клайна (6). Выход РНК составлял 50—70%. 28 S рРНК и 18 S рРНК получали электрофоретическим разделением на 2,8% полиакриламидном геле (80 в, 2 часа, 2°). Полосы РНК на фиксированных столбиках геля выявляли

окрашиванием 0,2% раствором метиленового синего (рис. 1).

Полосы геля с 28 S и 18 S рРНК вырезали и разрушали в стеклянном гомогенизаторе. Частицы геля заливали 3 мл 1,0 M NH₄OH и оставляли на 2 часа при 37° для гидролиза РНК. Затем взвесь встряхивали 30 мин., и частицы геля отделяли центрифугированием, а гидролиз продолжали еще 24 часа с целью получения щелочестабильных олигонуклеотидов. Полученный гидролизат подкисляли HClO₄ до рН 5, при-

бавляли кислую фосфатазу из пшеничных отрубей фирмы «Реанал» до 0.5% концентрации и инкубировали 18-20 час. при 37°. После фосфатазной обработки раствор, содержащий нуклеозиды и щелочестабильные олигонуклеозидфосфаты, метилированные по рибозе, закисляли до рН 1-2 и встряхивали с равным объемом хлороформа 20 мин. для удаления фосфатазы. После центрифугирования водную фазу отсасывали и нейтрализовали. Нейтрализованный раствор наносили на колонку с анионитом AGI-х8 200-400 меш Cl^- , (1×3) . Фракцию нуклеозидов элюировали 100 мл воды, фракцию олигонуклеозидфосфатов элюировали 75 мл 0,1 M HCl (рис. 2). Элюаты высушивали в потоке теплого воздуха. Радиоактивность полученных препаратов измеряли в диоксановом сцинтилляторе на «Nuclear Chicago Mark-1».

Табл. 1 показывает, что содержание метки в щелочестабильной олигонуклеотидной фракции щелочного гидролизата 18 S и 28 S рРНК из лимфоцитов больных хроническим лимфолейкозом в среднем

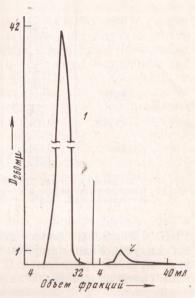


Рис. 2. Разделение на фракции щелочного гидролизата РНК после обработки его фосфатазой. I — мононуклеотиды (95,5%), 2 — динуклеотиды (4,5%)

ссставляет около 10% от активности суммы нуклеотиды + олигонуклеотиды. При этом уровень метилирования щелочестабильных олигонуклеотидов 28 S pPHK у 3 больных из 4 был выше, чем уровень метилирования олигонуклеотидов 18 S pPHK. В лимфоцитах доноров включение в щелочестабильные олигонуклеотиды 18 S pPHK в среднем составляет 25% активности суммы нуклеотиды + олигонуклеотиды и, напротив, во всех 3 случаях меньше в 28 S pPHK, чем включение в эту же фракцию в 18 S pPHK. Абсолютные цифры включения метки в щелочестабильную слигонуклеотидную фракцию также показывают, что уровень 2'-О-метилирования 18 S и 28 S pPHK в лимфоцитах больных хроническим лимфолейкозом в несколько раз меньше, чем в лимфоцитах доноров.

Не исключена возможность, что это абсолютное и относительное снижение 2'-О-метилирования рРНК лимфоцитов больных хроническим лимфолейкозом обусловливает большую атакуемость РНКазами или определенную конформационную дефектность, нарушающую нормальный синтез белка. Приводятся данные, которые показывают, что появление резистентного штама у золотистого стафилококка определяется исчезновением N⁸-диметиладенина в 23 S рРНК и потерей способности 50 S субъединицы связывать антибиотик (7). Изучению метилирования

Включение C¹⁴-(метил)-метионина в нуклеотиды и олигонуклеотиды 28S и 18S рРНК лимфоцитов доноров и больных хроническим лимфолейкозом (х.л.л)

Компоненты рРНК	N + NmpN	Нуклеотиды		Олигонуклеотиды	
	имп/мин	имп мин	%	имп/мин	%
285	_				17/1/2
mulain	1190	1022	87.0	158	13,0
188		<u>-</u>			
28S	957 6924	5040	91,0 73,0	86 1884	9,0 27,0
	2647	2353	89,0	294	11,0
18S	8145	3934	48,0	4211	52,0
28S	1815 1237	1604 967	97,0 78,0	112 270	$\frac{6,0}{22,0}$
200	599	543	90,5	56	9,0
18S	1231	799	65,0	432	35,0
28S	754 1904	704 1502	$93,\overline{5}$ $79,0$	50 402	6,5
203	2194	1990	90,5	204	$\frac{21,0}{9,5}$
18S	1434	2080	75,0	354	25,0
	2357	2087	88,5	270	11,5

Примечание. Цифры над чертой — данные для нуклеотидов лимфодитов доноров, цифры под чертой — для нуклеотидов лимфоцитов больных. N — нуклеозиды, NmpN... — олигонуклеозидфосфаты.

рРНК посвящены также два сообщения Торелли и соавторов (⁸, ⁶). Они инкубировали лимфоблаты больных острым лимфолейкозом одновременно с Н³-уридином и С¹⁴-(метил)-метионином и наблюдали увеличение соотношения Н²/С¹⁴ в 45 S рРНК, видимо, по той причине, что метилирование и дальнейшее превращение 45 S рРНК (процессинг) происходили с очень низкой скоростью. Возможно, недометилирование 45 S рРНК-предшественника ведет к замедлению его превращения в зрелые молекулы 28 S и 18 S рРНК.

Поскольку результаты наших исследований также позволили выявить различия в метилировании рРНК в лимфоцитах больных хроническим лимфолейкозом, а работы Купера свидетельствуют о связи процессов бпосинтеза 28 S и 18 S рРНК с регуляцией деления и дифференцировки лимфоцитов, то дальнейшее изучение особенностей метилирования рРНК, на наш взгляд, весьма перспективно.

Центральный институт гематологии и переливания крови Москва

Поступило 10 X 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. L. Cooper, J. Biol. Chem., 244, № 7, 1946 (1969). ² H. L. Cooper, J. Biol. Chem., 244, № 20, 5590 (1969). ³ J. L. Staar, B. H. Sells, Physiol. Rev., 49, № 3, 623 (1969). ⁴ J. Norton, J. S. Roth, J. Biol. Chem., 242, № 9, 2029 (1967). ⁵ Г. И. Козинец, В. В. Альперович, Н. Н. Талеленова, Лаб. дело, № 7. 389 (1971). ⁶ М. J. Cline, J. Lab. Clin. Med., 68, № 1 (1966). ⁷ С. J. Lai, B. Weisblum, Proc. Nat. Acad. Sci. USA., 68, № 4, 856 (1971). ⁸ U. L. Torelli, G. M. Torelli et al., Nature, 226, № 5251, 1163 (1970). ⁹ U. L. Torelli, G. M. Torelli et al., Acta haematol., 45, № 3, 201 (1971). ¹⁰ H. L. Cooper, Nature, № 5263, 1105 (1970). ¹¹ H. L. Cooper, E. M. Gibson, J. Biol. Chem., 246, № 16, 5059 (1971).