УДК 517.512.2

МАТЕМАТИКА

М. А. НАЙМАРК

КРИТЕРИИ НЕПРИВОДИМОСТИ И ДИСКРЕТНОЙ РАЗЛОЖИМОСТИ ОДНОРОДНОГО ПРЕДСТАВЛЕНИЯ ЛОКАЛЬНО КОМПАКТНОЙ ГРУППЫ

(Представлено академиком П. С. Новиковым 25 І 1972)

В этой статье сформулированы два достаточных условия неприводимости (одно из которых также необходимо) и достаточное условие дискретной разложимости на неприводимые представления однородного представления локально компактной группы. Кроме того, сформулировано достаточное условие полной неприводимости произвольного представления такой группы, которое, в случае связной комплексной полупростой группы Ли приводит к простым достаточным условиям полной неприводимости, являющимся, по-видимому, и необходимыми.

В статье используются терминология и обозначения статьи автора (1).

1. Критерии неприводимости и полной неприводимости.

T е о р е м а 1. Пусть T — представление группы G, однородное относительно U, c. Если выполнено по крайней мере одно из условий

1) k(T, U, c) = 1;

2) для каждого отличного от нуля вектора $\xi \in T_i^c E$

$$[T_i^c T(g)\xi, g \in G] = T_i^c E,$$

то T неприводимо.

Yсловие 2) Tакже необходимо для неприводимости T.

T е о р е м а 2. Пусть G — локально компактная группа, U — ее компактная подгруппа, обладающая счетной базой окрестностей, T — непрерывное представление группы G в E и пусть выполнены условия

1) Т неприводимо;

2) $k(T,U,c)<\infty$ для каждого неприводимого представления c группы U.

Tогда T вполне неприводимо *.

Следствие 1. Пусть G— связная полупростая группа Ли с консчным центром Z, 3— центр универсальной обертывающей алгебры Ли группы G. Если T— неприводимое представление группы G в банаховом пространстве, переводящее все элементы из Z и из 3 в операторы умножения на скаляр, то T вполне неприводимо.

Действительно, согласно известной теореме Хариш-Чандра (см. (⁴), стр. 236, теорема 4) в рассматриваемом случае выполняется условие 2) теоремы 2.

Следствие 2. Если G — связная полупростая группа Ли c конечным центром, то в классе элементарных представлений, а также подпредставлений приводимых элементарных представлений группы G, неприводимость равносильна полной неприводимости.

^{*} Для групп Ли близкий результат получил Д. П. Желобенко (2); там же см. определение иолной неприводимости. Близкий к теореме 2 результат получил также Фелл ((3), стр. 282, лемма 10).

Для комплексных полупростых групп Ли (в этом случае условие конечности центра излишне) утверждение следствия 2 доказал ранее Д. П. Желобенко (2).

Наконец, комбинируя теоремы 1 и 2, приходим к следующему резуль-

тату

Теорема 3. Пусть G — локально компактная группа, U — ее компактная подгруппа, обладающая счетной базой окрестностей, c° — фиксированное неприводимое представление группы U, T — представление группы G, однородное относительно U, c° и пусть выполнено условие

1) $k(T,U,c)<\infty$ для каждого неприводимого представления c груп-

nы U,

а также по крайней мере одно из условий:

2) $k(T, U, c^0) = 1$,

2') для каждого отличного от нуля вектора $\xi \in T_i^{co}E$

$$\{T_j^{c_0}T(g)\xi, g \in G\} = T_j^{c_0}E$$
.

Tогда T вполне неприводимо.

2. Ассоции рованные алгебры. Пусть, по-прежнему, U — компактная подгруппа группы G, c — фиксированное неприводимое представление группы U. Положим *

$$X_j^0 = \{x, e_{jj}^c x = x e_{jj}^c = x\}.$$
 (2.1)

Тогда X_j^c — подалгебра алгебры X. Пусть далее T — непрерывное представление группы G в пространстве E.

Положим далее $E_i{}^c = T_i{}^c E$. Пространство $E_i{}^c$ назовем а с с о ц и и р ованным подпространством представления T, отвечающим данным U, c и j. $E_i{}^c$ инвариантию относительно операторов T(x), $x \in X_i{}^c$ и T'(x) = 0 на $(1 - T_i{}^c)E$.

Обозначим через a(x) сужение оператора T(x) на E_j^c . Множество

$$\{a(x), x \in X_j^c\}$$

называется ассоциированной алгеброй представления T, отвечающей $U,\,c,\,j,\,u$ обозначается через $\mathscr{A}(T,\,U,\,c,\,j)$. Очевидно,

 $\mathcal{A}(T,U,c,j)$ есть подалгебра алгебры $L(E_{j^{c}})$.

Теорема 4. Пусть T—представление группы G в пространстве E такое, что \hat{T} квазиоднородно относительно U, c. Если в E_j^c существует вектор $\xi_0 \neq 0$, являющийся собственным вектором для каждого оператора a(x) из ассоциированной алгебры $\mathcal{A}(T,U,c,j)$, то в E существует замкнутое подпространство $M \neq (0)$, инвариантное относительно T, на котором T^M неприводимо.

Алгебра ${\mathscr A}$ линейных операторов в пространстве E называется д'и скретно диагонализируемой, если в E существует система век-

торов

$$\{\xi_1, \, \xi_2, \, \ldots\},$$
 (2,2)

обладающая следующими свойствами: 1) каждый вектор ξ_i есть общий собственный вектор для всех операторов алгебры \mathcal{A} ; 2) каждая конечная подсистема системы (2,2) линейно независима; 3) $[\xi_1, \xi_2, \ldots] = E$.

Представление T в пространстве E называют дискретной прямой суммой представлений T^{α} , $\alpha \in A$, в пространствах E^{α} и пишут $T = \sum_{A} \odot T^{\alpha}$, если выполняются условия 1)-2) из (1) и, кроме

того, условие: 3') каждая конечная подсистема системы $\{M^{\alpha}, \ \alpha \in A\}$ ли-

^{*} Определение операторов e_{jj}^{c} см., например, в (5), стр. 70.

нейно независима. Представление T называется дискретно разложим м м м, если $T=\sum_A \odot T^{\alpha}$, где каждое T^{α} неприводимо.

Теорема 5. Пусть T — представление группы G в пространстве E, однородное относительно U и c; если ассоциированная алгебра \mathcal{A} = $\mathcal{A}(T, U, c, j)$ дискретно диагонализируема, то T есть дискретная пря-

мая сумма неприводимых представлений группы G.

3. Применение к комплексным полупростым группам Ли. Всюду в этом п. З G обозначает связную комплексную полупростую группу Ли, U — максимальную компактную подгруппу (компактную вещественную форму), Z — центр, З — центр универсальной обертывающей алгебры алгебры Ли группы G, c^{λ} — неприводимое представление группы U веса λ , $c_{j\lambda}^{\lambda}(U)$ — матричные элементы представления c^{λ} в каноническом базисе, j_{λ} — тот из индексов j, которому отвечает вектор канонического базиса веса λ ; веса λ мы упорядочим лексикографически и будем считать их расположенными в порядке возрастания.

Положим

$$T_j^{\lambda} = T_j^{c^{\lambda}}, \quad T^{\lambda} = T_{j_{\lambda}},$$

$$\lambda_0(T) = \min\{\lambda, T^{\lambda} \neq 0\}.$$

Представление T группы G называется к в а з и о д н о р о д н ы м (соответственно о д н о р о д н ы м) веса λ_0 , если $\lambda_0(T) = \lambda_0$ и если T квазиоднородно (соответственно однородно) относительно U, c^{λ_0} . Для однородных и квазиоднородных представлений группы G веса λ_0 справедливы все предложения и теоремы пп. 1, 2 и пп. 2, 3 в (1), если термин «относительно U, c» заменить термином «веса λ_0 ».

Теорема 6. Пусть G — связная комплексная полупростая группа Ли u T — однородное представление этой группы веса λ_0 в банаховом пространстве E, переводящие все элементы из Z u из 3 в операторы умножения

на скаляр. Если

$$\dim (T^{\lambda_0}E) = 1,$$

то представление T вполне неприводимо.

Утверждение непосредственно вытекает из теоремы 1 и следствия 1 из п. 1.

Теорема 6 является частичным решением одной из задач, сформулированных автором в его докладе на международном конгрессе математиков в Ницце в 1970 г. (см. (°), п. 3).

Математический институт им. В. А. Стеклова Академии наук СССР Москва Поступило 15 XII 1971

цитированная литература

¹ М. А. Наймарк, ДАН, 205, № 4 (1972). ² Д. П. Желобенко, Изв. АН СССР, сер. матем., 32, 108 (1968). ³ J. G. Fell, Acta mathematica, 114, 267 (1965). ⁴ Harish-Chandra, Trans. Am. Math. Soc., 76, 234 (1954). ⁵ Д. П. Желобенко, М. А. Наймарк, Изв. АН СССР, сер. матем., 34, 57 (1970). ⁶ М. А. Naimark, Actes Congr. Intern. Math. Congr. Nice, 2, 407 (1971).